Metamath Proof Explorer


Theorem xnegre

Description: An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion xnegre A * A A

Proof

Step Hyp Ref Expression
1 xnegrecl A A
2 1 adantl A * A A
3 xnegrecl2 A * A A
4 2 3 impbida A * A A