Metamath Proof Explorer


Theorem xnegrecl2

Description: If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion xnegrecl2 A * A A

Proof

Step Hyp Ref Expression
1 xnegneg A * A = A
2 1 adantr A * A A = A
3 xnegrecl A A
4 3 adantl A * A A
5 2 4 eqeltrrd A * A A