Metamath Proof Explorer


Theorem xnegrecl2d

Description: If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses xnegrecl2d.1 φ A *
xnegrecl2d.2 φ A
Assertion xnegrecl2d φ A

Proof

Step Hyp Ref Expression
1 xnegrecl2d.1 φ A *
2 xnegrecl2d.2 φ A
3 xnegrecl2 A * A A
4 1 2 3 syl2anc φ A