Metamath Proof Explorer
Description: If the extended real negative is real, then the number itself is real.
(Contributed by Glauco Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypotheses |
xnegrecl2d.1 |
|
|
|
xnegrecl2d.2 |
|
|
Assertion |
xnegrecl2d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xnegrecl2d.1 |
|
2 |
|
xnegrecl2d.2 |
|
3 |
|
xnegrecl2 |
|
4 |
1 2 3
|
syl2anc |
|