Metamath Proof Explorer


Theorem xnegred

Description: An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis xnegred.1 φ A *
Assertion xnegred φ A A

Proof

Step Hyp Ref Expression
1 xnegred.1 φ A *
2 xnegre A * A A
3 1 2 syl φ A A