Metamath Proof Explorer


Theorem xnn0add4d

Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d . (Contributed by AV, 12-Dec-2020)

Ref Expression
Hypotheses xnn0add4d.1 φ A 0 *
xnn0add4d.2 φ B 0 *
xnn0add4d.3 φ C 0 *
xnn0add4d.4 φ D 0 *
Assertion xnn0add4d φ A + 𝑒 B + 𝑒 C + 𝑒 D = A + 𝑒 C + 𝑒 B + 𝑒 D

Proof

Step Hyp Ref Expression
1 xnn0add4d.1 φ A 0 *
2 xnn0add4d.2 φ B 0 *
3 xnn0add4d.3 φ C 0 *
4 xnn0add4d.4 φ D 0 *
5 xnn0xrnemnf A 0 * A * A −∞
6 1 5 syl φ A * A −∞
7 xnn0xrnemnf B 0 * B * B −∞
8 2 7 syl φ B * B −∞
9 xnn0xrnemnf C 0 * C * C −∞
10 3 9 syl φ C * C −∞
11 xnn0xrnemnf D 0 * D * D −∞
12 4 11 syl φ D * D −∞
13 6 8 10 12 xadd4d φ A + 𝑒 B + 𝑒 C + 𝑒 D = A + 𝑒 C + 𝑒 B + 𝑒 D