Metamath Proof Explorer


Theorem xnn0lem1lt

Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion xnn0lem1lt M 0 N 0 * M N M 1 < N

Proof

Step Hyp Ref Expression
1 nn0lem1lt M 0 N 0 M N M 1 < N
2 1 adantlr M 0 N 0 * N 0 M N M 1 < N
3 nn0re M 0 M
4 3 rexrd M 0 M *
5 pnfge M * M +∞
6 4 5 syl M 0 M +∞
7 6 ad2antrr M 0 N 0 * ¬ N 0 M +∞
8 simpll M 0 N 0 * ¬ N 0 M 0
9 peano2rem M M 1
10 ltpnf M 1 M 1 < +∞
11 8 3 9 10 4syl M 0 N 0 * ¬ N 0 M 1 < +∞
12 7 11 2thd M 0 N 0 * ¬ N 0 M +∞ M 1 < +∞
13 xnn0nnn0pnf N 0 * ¬ N 0 N = +∞
14 13 adantll M 0 N 0 * ¬ N 0 N = +∞
15 14 breq2d M 0 N 0 * ¬ N 0 M N M +∞
16 14 breq2d M 0 N 0 * ¬ N 0 M 1 < N M 1 < +∞
17 12 15 16 3bitr4d M 0 N 0 * ¬ N 0 M N M 1 < N
18 2 17 pm2.61dan M 0 N 0 * M N M 1 < N