Metamath Proof Explorer


Theorem xnn0n0n1ge2b

Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021)

Ref Expression
Assertion xnn0n0n1ge2b N 0 * N 0 N 1 2 N

Proof

Step Hyp Ref Expression
1 elxnn0 N 0 * N 0 N = +∞
2 nn0n0n1ge2b N 0 N 0 N 1 2 N
3 0nn0 0 0
4 nn0nepnf 0 0 0 +∞
5 3 4 ax-mp 0 +∞
6 5 necomi +∞ 0
7 neeq1 N = +∞ N 0 +∞ 0
8 6 7 mpbiri N = +∞ N 0
9 1nn0 1 0
10 nn0nepnf 1 0 1 +∞
11 9 10 ax-mp 1 +∞
12 11 necomi +∞ 1
13 neeq1 N = +∞ N 1 +∞ 1
14 12 13 mpbiri N = +∞ N 1
15 8 14 jca N = +∞ N 0 N 1
16 2re 2
17 16 rexri 2 *
18 pnfge 2 * 2 +∞
19 17 18 ax-mp 2 +∞
20 breq2 N = +∞ 2 N 2 +∞
21 19 20 mpbiri N = +∞ 2 N
22 15 21 2thd N = +∞ N 0 N 1 2 N
23 2 22 jaoi N 0 N = +∞ N 0 N 1 2 N
24 1 23 sylbi N 0 * N 0 N 1 2 N