Metamath Proof Explorer


Theorem xnn0nemnf

Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020)

Ref Expression
Assertion xnn0nemnf A 0 * A −∞

Proof

Step Hyp Ref Expression
1 elxnn0 A 0 * A 0 A = +∞
2 nn0re A 0 A
3 2 renemnfd A 0 A −∞
4 pnfnemnf +∞ −∞
5 neeq1 A = +∞ A −∞ +∞ −∞
6 4 5 mpbiri A = +∞ A −∞
7 3 6 jaoi A 0 A = +∞ A −∞
8 1 7 sylbi A 0 * A −∞