Metamath Proof Explorer


Theorem xnn0xadd0

Description: The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0 . (Contributed by AV, 14-Dec-2020)

Ref Expression
Assertion xnn0xadd0 A 0 * B 0 * A + 𝑒 B = 0 A = 0 B = 0

Proof

Step Hyp Ref Expression
1 elxnn0 A 0 * A 0 A = +∞
2 elxnn0 B 0 * B 0 B = +∞
3 nn0re A 0 A
4 nn0re B 0 B
5 rexadd A B A + 𝑒 B = A + B
6 3 4 5 syl2an A 0 B 0 A + 𝑒 B = A + B
7 6 eqeq1d A 0 B 0 A + 𝑒 B = 0 A + B = 0
8 nn0ge0 A 0 0 A
9 3 8 jca A 0 A 0 A
10 nn0ge0 B 0 0 B
11 4 10 jca B 0 B 0 B
12 add20 A 0 A B 0 B A + B = 0 A = 0 B = 0
13 9 11 12 syl2an A 0 B 0 A + B = 0 A = 0 B = 0
14 7 13 bitrd A 0 B 0 A + 𝑒 B = 0 A = 0 B = 0
15 14 biimpd A 0 B 0 A + 𝑒 B = 0 A = 0 B = 0
16 15 expcom B 0 A 0 A + 𝑒 B = 0 A = 0 B = 0
17 oveq2 B = +∞ A + 𝑒 B = A + 𝑒 +∞
18 17 eqeq1d B = +∞ A + 𝑒 B = 0 A + 𝑒 +∞ = 0
19 18 adantr B = +∞ A 0 A + 𝑒 B = 0 A + 𝑒 +∞ = 0
20 nn0xnn0 A 0 A 0 *
21 xnn0xrnemnf A 0 * A * A −∞
22 xaddpnf1 A * A −∞ A + 𝑒 +∞ = +∞
23 20 21 22 3syl A 0 A + 𝑒 +∞ = +∞
24 23 adantl B = +∞ A 0 A + 𝑒 +∞ = +∞
25 24 eqeq1d B = +∞ A 0 A + 𝑒 +∞ = 0 +∞ = 0
26 19 25 bitrd B = +∞ A 0 A + 𝑒 B = 0 +∞ = 0
27 0re 0
28 renepnf 0 0 +∞
29 27 28 ax-mp 0 +∞
30 29 nesymi ¬ +∞ = 0
31 30 pm2.21i +∞ = 0 A = 0 B = 0
32 26 31 syl6bi B = +∞ A 0 A + 𝑒 B = 0 A = 0 B = 0
33 32 ex B = +∞ A 0 A + 𝑒 B = 0 A = 0 B = 0
34 16 33 jaoi B 0 B = +∞ A 0 A + 𝑒 B = 0 A = 0 B = 0
35 2 34 sylbi B 0 * A 0 A + 𝑒 B = 0 A = 0 B = 0
36 35 com12 A 0 B 0 * A + 𝑒 B = 0 A = 0 B = 0
37 oveq1 A = +∞ A + 𝑒 B = +∞ + 𝑒 B
38 37 eqeq1d A = +∞ A + 𝑒 B = 0 +∞ + 𝑒 B = 0
39 xnn0xrnemnf B 0 * B * B −∞
40 xaddpnf2 B * B −∞ +∞ + 𝑒 B = +∞
41 39 40 syl B 0 * +∞ + 𝑒 B = +∞
42 41 eqeq1d B 0 * +∞ + 𝑒 B = 0 +∞ = 0
43 38 42 sylan9bb A = +∞ B 0 * A + 𝑒 B = 0 +∞ = 0
44 43 31 syl6bi A = +∞ B 0 * A + 𝑒 B = 0 A = 0 B = 0
45 44 ex A = +∞ B 0 * A + 𝑒 B = 0 A = 0 B = 0
46 36 45 jaoi A 0 A = +∞ B 0 * A + 𝑒 B = 0 A = 0 B = 0
47 1 46 sylbi A 0 * B 0 * A + 𝑒 B = 0 A = 0 B = 0
48 47 imp A 0 * B 0 * A + 𝑒 B = 0 A = 0 B = 0
49 oveq12 A = 0 B = 0 A + 𝑒 B = 0 + 𝑒 0
50 0xr 0 *
51 xaddid1 0 * 0 + 𝑒 0 = 0
52 50 51 ax-mp 0 + 𝑒 0 = 0
53 49 52 eqtrdi A = 0 B = 0 A + 𝑒 B = 0
54 48 53 impbid1 A 0 * B 0 * A + 𝑒 B = 0 A = 0 B = 0