Metamath Proof Explorer


Theorem xnn0xaddcl

Description: The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020)

Ref Expression
Assertion xnn0xaddcl A 0 * B 0 * A + 𝑒 B 0 *

Proof

Step Hyp Ref Expression
1 nn0addcl A 0 B 0 A + B 0
2 1 nn0xnn0d A 0 B 0 A + B 0 *
3 nn0re A 0 A
4 nn0re B 0 B
5 rexadd A B A + 𝑒 B = A + B
6 5 eleq1d A B A + 𝑒 B 0 * A + B 0 *
7 3 4 6 syl2an A 0 B 0 A + 𝑒 B 0 * A + B 0 *
8 2 7 mpbird A 0 B 0 A + 𝑒 B 0 *
9 8 a1d A 0 B 0 A 0 * B 0 * A + 𝑒 B 0 *
10 ianor ¬ A 0 B 0 ¬ A 0 ¬ B 0
11 xnn0nnn0pnf A 0 * ¬ A 0 A = +∞
12 oveq1 A = +∞ A + 𝑒 B = +∞ + 𝑒 B
13 xnn0xrnemnf B 0 * B * B −∞
14 xaddpnf2 B * B −∞ +∞ + 𝑒 B = +∞
15 13 14 syl B 0 * +∞ + 𝑒 B = +∞
16 12 15 sylan9eq A = +∞ B 0 * A + 𝑒 B = +∞
17 16 ex A = +∞ B 0 * A + 𝑒 B = +∞
18 11 17 syl A 0 * ¬ A 0 B 0 * A + 𝑒 B = +∞
19 18 expcom ¬ A 0 A 0 * B 0 * A + 𝑒 B = +∞
20 19 impd ¬ A 0 A 0 * B 0 * A + 𝑒 B = +∞
21 xnn0nnn0pnf B 0 * ¬ B 0 B = +∞
22 oveq2 B = +∞ A + 𝑒 B = A + 𝑒 +∞
23 xnn0xrnemnf A 0 * A * A −∞
24 xaddpnf1 A * A −∞ A + 𝑒 +∞ = +∞
25 23 24 syl A 0 * A + 𝑒 +∞ = +∞
26 22 25 sylan9eq B = +∞ A 0 * A + 𝑒 B = +∞
27 26 ex B = +∞ A 0 * A + 𝑒 B = +∞
28 21 27 syl B 0 * ¬ B 0 A 0 * A + 𝑒 B = +∞
29 28 expcom ¬ B 0 B 0 * A 0 * A + 𝑒 B = +∞
30 29 impcomd ¬ B 0 A 0 * B 0 * A + 𝑒 B = +∞
31 20 30 jaoi ¬ A 0 ¬ B 0 A 0 * B 0 * A + 𝑒 B = +∞
32 31 imp ¬ A 0 ¬ B 0 A 0 * B 0 * A + 𝑒 B = +∞
33 pnf0xnn0 +∞ 0 *
34 32 33 eqeltrdi ¬ A 0 ¬ B 0 A 0 * B 0 * A + 𝑒 B 0 *
35 34 ex ¬ A 0 ¬ B 0 A 0 * B 0 * A + 𝑒 B 0 *
36 10 35 sylbi ¬ A 0 B 0 A 0 * B 0 * A + 𝑒 B 0 *
37 9 36 pm2.61i A 0 * B 0 * A + 𝑒 B 0 *