Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xnpcan
Next ⟩
xleadd1a
Metamath Proof Explorer
Ascii
Unicode
Theorem
xnpcan
Description:
Extended real version of
npcan
.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xnpcan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
→
A
+
𝑒
−
B
+
𝑒
B
=
A
Proof
Step
Hyp
Ref
Expression
1
rexr
⊢
B
∈
ℝ
→
B
∈
ℝ
*
2
xnegneg
⊢
B
∈
ℝ
*
→
−
−
B
=
B
3
1
2
syl
⊢
B
∈
ℝ
→
−
−
B
=
B
4
3
adantl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
→
−
−
B
=
B
5
4
oveq2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
→
A
+
𝑒
−
B
+
𝑒
−
−
B
=
A
+
𝑒
−
B
+
𝑒
B
6
rexneg
⊢
B
∈
ℝ
→
−
B
=
−
B
7
renegcl
⊢
B
∈
ℝ
→
−
B
∈
ℝ
8
6
7
eqeltrd
⊢
B
∈
ℝ
→
−
B
∈
ℝ
9
xpncan
⊢
A
∈
ℝ
*
∧
−
B
∈
ℝ
→
A
+
𝑒
−
B
+
𝑒
−
−
B
=
A
10
8
9
sylan2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
→
A
+
𝑒
−
B
+
𝑒
−
−
B
=
A
11
5
10
eqtr3d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
→
A
+
𝑒
−
B
+
𝑒
B
=
A