Metamath Proof Explorer


Theorem xnpcan

Description: Extended real version of npcan . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnpcan A * B A + 𝑒 B + 𝑒 B = A

Proof

Step Hyp Ref Expression
1 rexr B B *
2 xnegneg B * B = B
3 1 2 syl B B = B
4 3 adantl A * B B = B
5 4 oveq2d A * B A + 𝑒 B + 𝑒 B = A + 𝑒 B + 𝑒 B
6 rexneg B B = B
7 renegcl B B
8 6 7 eqeltrd B B
9 xpncan A * B A + 𝑒 B + 𝑒 B = A
10 8 9 sylan2 A * B A + 𝑒 B + 𝑒 B = A
11 5 10 eqtr3d A * B A + 𝑒 B + 𝑒 B = A