Metamath Proof Explorer


Theorem xor

Description: Two ways to express exclusive disjunction ( df-xor ). Theorem *5.22 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 22-Jan-2013)

Ref Expression
Assertion xor ¬ φ ψ φ ¬ ψ ψ ¬ φ

Proof

Step Hyp Ref Expression
1 iman φ ψ ¬ φ ¬ ψ
2 iman ψ φ ¬ ψ ¬ φ
3 1 2 anbi12i φ ψ ψ φ ¬ φ ¬ ψ ¬ ψ ¬ φ
4 dfbi2 φ ψ φ ψ ψ φ
5 ioran ¬ φ ¬ ψ ψ ¬ φ ¬ φ ¬ ψ ¬ ψ ¬ φ
6 3 4 5 3bitr4ri ¬ φ ¬ ψ ψ ¬ φ φ ψ
7 6 con1bii ¬ φ ψ φ ¬ ψ ψ ¬ φ