Metamath Proof Explorer


Theorem xorass

Description: The connector \/_ is associative. (Contributed by FL, 22-Nov-2010) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Proof shortened by Wolf Lammen, 20-Jun-2020)

Ref Expression
Assertion xorass φ ψ χ φ ψ χ

Proof

Step Hyp Ref Expression
1 xor3 ¬ φ ψ χ φ ¬ ψ χ
2 biass φ ψ χ φ ψ χ
3 xnor φ ψ ¬ φ ψ
4 3 bibi1i φ ψ χ ¬ φ ψ χ
5 xnor ψ χ ¬ ψ χ
6 5 bibi2i φ ψ χ φ ¬ ψ χ
7 2 4 6 3bitr3i ¬ φ ψ χ φ ¬ ψ χ
8 nbbn ¬ φ ψ χ ¬ φ ψ χ
9 1 7 8 3bitr2ri ¬ φ ψ χ ¬ φ ψ χ
10 df-xor φ ψ χ ¬ φ ψ χ
11 df-xor φ ψ χ ¬ φ ψ χ
12 9 10 11 3bitr4i φ ψ χ φ ψ χ