Metamath Proof Explorer


Theorem xorneg2

Description: The connector \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 27-Jun-2020)

Ref Expression
Assertion xorneg2 φ ¬ ψ ¬ φ ψ

Proof

Step Hyp Ref Expression
1 df-xor φ ¬ ψ ¬ φ ¬ ψ
2 pm5.18 φ ψ ¬ φ ¬ ψ
3 xnor φ ψ ¬ φ ψ
4 1 2 3 3bitr2i φ ¬ ψ ¬ φ ψ