Step |
Hyp |
Ref |
Expression |
1 |
|
xov1plusxeqvd.1 |
|
2 |
|
xov1plusxeqvd.2 |
|
3 |
|
simpr |
|
4 |
3
|
rpred |
|
5 |
|
1rp |
|
6 |
5
|
a1i |
|
7 |
6 3
|
rpaddcld |
|
8 |
4 7
|
rerpdivcld |
|
9 |
7
|
rprecred |
|
10 |
|
1red |
|
11 |
|
0red |
|
12 |
10 4
|
readdcld |
|
13 |
10 3
|
ltaddrpd |
|
14 |
|
recgt1i |
|
15 |
12 13 14
|
syl2anc |
|
16 |
15
|
simprd |
|
17 |
|
1m0e1 |
|
18 |
16 17
|
breqtrrdi |
|
19 |
9 10 11 18
|
ltsub13d |
|
20 |
|
1cnd |
|
21 |
20 1
|
addcld |
|
22 |
20
|
negcld |
|
23 |
20 1 22 2
|
addneintrd |
|
24 |
|
1pneg1e0 |
|
25 |
24
|
a1i |
|
26 |
23 25
|
neeqtrd |
|
27 |
21 20 21 26
|
divsubdird |
|
28 |
20 1
|
pncan2d |
|
29 |
28
|
oveq1d |
|
30 |
21 26
|
dividd |
|
31 |
30
|
oveq1d |
|
32 |
27 29 31
|
3eqtr3d |
|
33 |
32
|
adantr |
|
34 |
19 33
|
breqtrrd |
|
35 |
|
1m1e0 |
|
36 |
15
|
simpld |
|
37 |
35 36
|
eqbrtrid |
|
38 |
10 10 9 37
|
ltsub23d |
|
39 |
33 38
|
eqbrtrd |
|
40 |
|
0xr |
|
41 |
|
1xr |
|
42 |
|
elioo2 |
|
43 |
40 41 42
|
mp2an |
|
44 |
8 34 39 43
|
syl3anbrc |
|
45 |
28
|
adantr |
|
46 |
21
|
adantr |
|
47 |
26
|
adantr |
|
48 |
46 47
|
recrecd |
|
49 |
21 1 21 26
|
divsubdird |
|
50 |
20 1
|
pncand |
|
51 |
50
|
oveq1d |
|
52 |
30
|
oveq1d |
|
53 |
49 51 52
|
3eqtr3d |
|
54 |
53
|
adantr |
|
55 |
|
1red |
|
56 |
|
simpr |
|
57 |
56 43
|
sylib |
|
58 |
57
|
simp1d |
|
59 |
55 58
|
resubcld |
|
60 |
54 59
|
eqeltrd |
|
61 |
|
0red |
|
62 |
57
|
simp3d |
|
63 |
62 17
|
breqtrrdi |
|
64 |
58 55 61 63
|
ltsub13d |
|
65 |
64 54
|
breqtrrd |
|
66 |
60 65
|
elrpd |
|
67 |
66
|
rprecred |
|
68 |
48 67
|
eqeltrrd |
|
69 |
68 55
|
resubcld |
|
70 |
45 69
|
eqeltrrd |
|
71 |
|
1p0e1 |
|
72 |
57
|
simp2d |
|
73 |
35 72
|
eqbrtrid |
|
74 |
55 55 58 73
|
ltsub23d |
|
75 |
54 74
|
eqbrtrd |
|
76 |
66
|
reclt1d |
|
77 |
75 76
|
mpbid |
|
78 |
77 48
|
breqtrd |
|
79 |
71 78
|
eqbrtrid |
|
80 |
61 70 55
|
ltadd2d |
|
81 |
79 80
|
mpbird |
|
82 |
70 81
|
elrpd |
|
83 |
44 82
|
impbida |
|