Metamath Proof Explorer


Theorem xp0

Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of Monk1 p. 37. (Contributed by NM, 12-Apr-2004) Avoid axioms. (Revised by TM, 1-Feb-2026)

Ref Expression
Assertion xp0 A × =

Proof

Step Hyp Ref Expression
1 noel ¬ y
2 simprr z = x y x A y y
3 1 2 mto ¬ z = x y x A y
4 3 nex ¬ y z = x y x A y
5 4 nex ¬ x y z = x y x A y
6 elxpi z A × x y z = x y x A y
7 5 6 mto ¬ z A ×
8 7 nel0 A × =