Metamath Proof Explorer


Theorem xpcan2

Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011)

Ref Expression
Assertion xpcan2 C A × C = B × C A = B

Proof

Step Hyp Ref Expression
1 xp11 A C A × C = B × C A = B C = C
2 eqid C = C
3 2 biantru A = B A = B C = C
4 1 3 bitr4di A C A × C = B × C A = B
5 nne ¬ A A =
6 simpl A = C A =
7 xpeq1 A = A × C = × C
8 0xp × C =
9 7 8 eqtrdi A = A × C =
10 9 eqeq1d A = A × C = B × C = B × C
11 eqcom = B × C B × C =
12 10 11 bitrdi A = A × C = B × C B × C =
13 12 adantr A = C A × C = B × C B × C =
14 df-ne C ¬ C =
15 xpeq0 B × C = B = C =
16 orel2 ¬ C = B = C = B =
17 15 16 syl5bi ¬ C = B × C = B =
18 14 17 sylbi C B × C = B =
19 18 adantl A = C B × C = B =
20 13 19 sylbid A = C A × C = B × C B =
21 eqtr3 A = B = A = B
22 6 20 21 syl6an A = C A × C = B × C A = B
23 xpeq1 A = B A × C = B × C
24 22 23 impbid1 A = C A × C = B × C A = B
25 5 24 sylanb ¬ A C A × C = B × C A = B
26 4 25 pm2.61ian C A × C = B × C A = B