Metamath Proof Explorer


Theorem xpcomen

Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 5-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses xpcomen.1 A V
xpcomen.2 B V
Assertion xpcomen A × B B × A

Proof

Step Hyp Ref Expression
1 xpcomen.1 A V
2 xpcomen.2 B V
3 1 2 xpex A × B V
4 2 1 xpex B × A V
5 eqid x A × B x -1 = x A × B x -1
6 5 xpcomf1o x A × B x -1 : A × B 1-1 onto B × A
7 f1oen2g A × B V B × A V x A × B x -1 : A × B 1-1 onto B × A A × B B × A
8 3 4 6 7 mp3an A × B B × A