Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
xpcomen
Metamath Proof Explorer
Description: Commutative law for equinumerosity of Cartesian product. Proposition
4.22(d) of Mendelson p. 254. (Contributed by NM , 5-Jan-2004)
(Revised by Mario Carneiro , 15-Nov-2014)
Ref
Expression
Hypotheses
xpcomen.1
⊢ A ∈ V
xpcomen.2
⊢ B ∈ V
Assertion
xpcomen
⊢ A × B ≈ B × A
Proof
Step
Hyp
Ref
Expression
1
xpcomen.1
⊢ A ∈ V
2
xpcomen.2
⊢ B ∈ V
3
1 2
xpex
⊢ A × B ∈ V
4
2 1
xpex
⊢ B × A ∈ V
5
eqid
⊢ x ∈ A × B ⟼ ⋃ x -1 = x ∈ A × B ⟼ ⋃ x -1
6
5
xpcomf1o
⊢ x ∈ A × B ⟼ ⋃ x -1 : A × B ⟶ 1-1 onto B × A
7
f1oen2g
⊢ A × B ∈ V ∧ B × A ∈ V ∧ x ∈ A × B ⟼ ⋃ x -1 : A × B ⟶ 1-1 onto B × A → A × B ≈ B × A
8
3 4 6 7
mp3an
⊢ A × B ≈ B × A