Metamath Proof Explorer


Theorem xpcomeng

Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 27-Mar-2006)

Ref Expression
Assertion xpcomeng A V B W A × B B × A

Proof

Step Hyp Ref Expression
1 xpeq1 x = A x × y = A × y
2 xpeq2 x = A y × x = y × A
3 1 2 breq12d x = A x × y y × x A × y y × A
4 xpeq2 y = B A × y = A × B
5 xpeq1 y = B y × A = B × A
6 4 5 breq12d y = B A × y y × A A × B B × A
7 vex x V
8 vex y V
9 7 8 xpcomen x × y y × x
10 3 6 9 vtocl2g A V B W A × B B × A