Metamath Proof Explorer


Theorem xpct

Description: The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017)

Ref Expression
Assertion xpct A ω B ω A × B ω

Proof

Step Hyp Ref Expression
1 ctex B ω B V
2 1 adantl A ω B ω B V
3 simpl A ω B ω A ω
4 xpdom1g B V A ω A × B ω × B
5 2 3 4 syl2anc A ω B ω A × B ω × B
6 omex ω V
7 6 xpdom2 B ω ω × B ω × ω
8 7 adantl A ω B ω ω × B ω × ω
9 domtr A × B ω × B ω × B ω × ω A × B ω × ω
10 5 8 9 syl2anc A ω B ω A × B ω × ω
11 xpomen ω × ω ω
12 domentr A × B ω × ω ω × ω ω A × B ω
13 10 11 12 sylancl A ω B ω A × B ω