Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
xpdisj1
Next ⟩
xpdisj2
Metamath Proof Explorer
Ascii
Unicode
Theorem
xpdisj1
Description:
Cartesian products with disjoint sets are disjoint.
(Contributed by
NM
, 13-Sep-2004)
Ref
Expression
Assertion
xpdisj1
⊢
A
∩
B
=
∅
→
A
×
C
∩
B
×
D
=
∅
Proof
Step
Hyp
Ref
Expression
1
xpeq1
⊢
A
∩
B
=
∅
→
A
∩
B
×
C
∩
D
=
∅
×
C
∩
D
2
inxp
⊢
A
×
C
∩
B
×
D
=
A
∩
B
×
C
∩
D
3
0xp
⊢
∅
×
C
∩
D
=
∅
4
3
eqcomi
⊢
∅
=
∅
×
C
∩
D
5
1
2
4
3eqtr4g
⊢
A
∩
B
=
∅
→
A
×
C
∩
B
×
D
=
∅