Metamath Proof Explorer


Theorem xpdom1g

Description: Dominance law for Cartesian product. Theorem 6L(c) of Enderton p. 149. (Contributed by NM, 25-Mar-2006) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion xpdom1g C V A B A × C B × C

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex1i A B A V
3 xpcomeng A V C V A × C C × A
4 3 ancoms C V A V A × C C × A
5 2 4 sylan2 C V A B A × C C × A
6 xpdom2g C V A B C × A C × B
7 1 brrelex2i A B B V
8 xpcomeng C V B V C × B B × C
9 7 8 sylan2 C V A B C × B B × C
10 domentr C × A C × B C × B B × C C × A B × C
11 6 9 10 syl2anc C V A B C × A B × C
12 endomtr A × C C × A C × A B × C A × C B × C
13 5 11 12 syl2anc C V A B A × C B × C