| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpdom.2 |
|
| 2 |
|
brdomi |
|
| 3 |
|
f1f |
|
| 4 |
|
ffvelcdm |
|
| 5 |
4
|
ex |
|
| 6 |
3 5
|
syl |
|
| 7 |
6
|
anim2d |
|
| 8 |
7
|
adantld |
|
| 9 |
|
elxp4 |
|
| 10 |
|
opelxp |
|
| 11 |
8 9 10
|
3imtr4g |
|
| 12 |
11
|
adantl |
|
| 13 |
|
elxp2 |
|
| 14 |
|
elxp2 |
|
| 15 |
|
vex |
|
| 16 |
|
fvex |
|
| 17 |
15 16
|
opth |
|
| 18 |
|
f1fveq |
|
| 19 |
18
|
ancoms |
|
| 20 |
19
|
anbi2d |
|
| 21 |
17 20
|
bitrid |
|
| 22 |
21
|
ex |
|
| 23 |
22
|
ad2ant2l |
|
| 24 |
23
|
imp |
|
| 25 |
24
|
adantlr |
|
| 26 |
|
sneq |
|
| 27 |
26
|
dmeqd |
|
| 28 |
27
|
unieqd |
|
| 29 |
|
vex |
|
| 30 |
15 29
|
op1sta |
|
| 31 |
28 30
|
eqtrdi |
|
| 32 |
26
|
rneqd |
|
| 33 |
32
|
unieqd |
|
| 34 |
15 29
|
op2nda |
|
| 35 |
33 34
|
eqtrdi |
|
| 36 |
35
|
fveq2d |
|
| 37 |
31 36
|
opeq12d |
|
| 38 |
|
sneq |
|
| 39 |
38
|
dmeqd |
|
| 40 |
39
|
unieqd |
|
| 41 |
|
vex |
|
| 42 |
|
vex |
|
| 43 |
41 42
|
op1sta |
|
| 44 |
40 43
|
eqtrdi |
|
| 45 |
38
|
rneqd |
|
| 46 |
45
|
unieqd |
|
| 47 |
41 42
|
op2nda |
|
| 48 |
46 47
|
eqtrdi |
|
| 49 |
48
|
fveq2d |
|
| 50 |
44 49
|
opeq12d |
|
| 51 |
37 50
|
eqeqan12d |
|
| 52 |
51
|
ad2antlr |
|
| 53 |
|
eqeq12 |
|
| 54 |
15 29
|
opth |
|
| 55 |
53 54
|
bitrdi |
|
| 56 |
55
|
ad2antlr |
|
| 57 |
25 52 56
|
3bitr4d |
|
| 58 |
57
|
exp53 |
|
| 59 |
58
|
com23 |
|
| 60 |
59
|
rexlimivv |
|
| 61 |
60
|
rexlimdvv |
|
| 62 |
61
|
imp |
|
| 63 |
13 14 62
|
syl2anb |
|
| 64 |
63
|
com12 |
|
| 65 |
64
|
adantl |
|
| 66 |
|
reldom |
|
| 67 |
66
|
brrelex1i |
|
| 68 |
|
xpexg |
|
| 69 |
1 67 68
|
sylancr |
|
| 70 |
69
|
adantr |
|
| 71 |
66
|
brrelex2i |
|
| 72 |
|
xpexg |
|
| 73 |
1 71 72
|
sylancr |
|
| 74 |
73
|
adantr |
|
| 75 |
12 65 70 74
|
dom3d |
|
| 76 |
2 75
|
exlimddv |
|