Metamath Proof Explorer


Theorem xpdom2g

Description: Dominance law for Cartesian product. Theorem 6L(c) of Enderton p. 149. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion xpdom2g C V A B C × A C × B

Proof

Step Hyp Ref Expression
1 xpeq1 x = C x × A = C × A
2 xpeq1 x = C x × B = C × B
3 1 2 breq12d x = C x × A x × B C × A C × B
4 3 imbi2d x = C A B x × A x × B A B C × A C × B
5 vex x V
6 5 xpdom2 A B x × A x × B
7 4 6 vtoclg C V A B C × A C × B
8 7 imp C V A B C × A C × B