Metamath Proof Explorer


Theorem xpdom3

Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of Suppes p. 98. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xpdom3 A V B W B A A × B

Proof

Step Hyp Ref Expression
1 n0 B x x B
2 xpsneng A V x B A × x A
3 2 3adant2 A V B W x B A × x A
4 3 ensymd A V B W x B A A × x
5 xpexg A V B W A × B V
6 5 3adant3 A V B W x B A × B V
7 simp3 A V B W x B x B
8 7 snssd A V B W x B x B
9 xpss2 x B A × x A × B
10 8 9 syl A V B W x B A × x A × B
11 ssdomg A × B V A × x A × B A × x A × B
12 6 10 11 sylc A V B W x B A × x A × B
13 endomtr A A × x A × x A × B A A × B
14 4 12 13 syl2anc A V B W x B A A × B
15 14 3expia A V B W x B A A × B
16 15 exlimdv A V B W x x B A A × B
17 1 16 syl5bi A V B W B A A × B
18 17 3impia A V B W B A A × B