Metamath Proof Explorer


Theorem xpen

Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of Mendelson p. 254. (Contributed by NM, 24-Jul-2004) (Proof shortened by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion xpen A B C D A × C B × D

Proof

Step Hyp Ref Expression
1 relen Rel
2 1 brrelex1i C D C V
3 endom A B A B
4 xpdom1g C V A B A × C B × C
5 2 3 4 syl2anr A B C D A × C B × C
6 1 brrelex2i A B B V
7 endom C D C D
8 xpdom2g B V C D B × C B × D
9 6 7 8 syl2an A B C D B × C B × D
10 domtr A × C B × C B × C B × D A × C B × D
11 5 9 10 syl2anc A B C D A × C B × D
12 1 brrelex2i C D D V
13 ensym A B B A
14 endom B A B A
15 13 14 syl A B B A
16 xpdom1g D V B A B × D A × D
17 12 15 16 syl2anr A B C D B × D A × D
18 1 brrelex1i A B A V
19 ensym C D D C
20 endom D C D C
21 19 20 syl C D D C
22 xpdom2g A V D C A × D A × C
23 18 21 22 syl2an A B C D A × D A × C
24 domtr B × D A × D A × D A × C B × D A × C
25 17 23 24 syl2anc A B C D B × D A × C
26 sbth A × C B × D B × D A × C A × C B × D
27 11 25 26 syl2anc A B C D A × C B × D