Metamath Proof Explorer


Theorem xpeq12d

Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013)

Ref Expression
Hypotheses xpeq1d.1 φ A = B
xpeq12d.2 φ C = D
Assertion xpeq12d φ A × C = B × D

Proof

Step Hyp Ref Expression
1 xpeq1d.1 φ A = B
2 xpeq12d.2 φ C = D
3 xpeq12 A = B C = D A × C = B × D
4 1 2 3 syl2anc φ A × C = B × D