Metamath Proof Explorer


Theorem xpeq12i

Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009)

Ref Expression
Hypotheses xpeq12i.1 A = B
xpeq12i.2 C = D
Assertion xpeq12i A × C = B × D

Proof

Step Hyp Ref Expression
1 xpeq12i.1 A = B
2 xpeq12i.2 C = D
3 xpeq12 A = B C = D A × C = B × D
4 1 2 3 mp2an A × C = B × D