Metamath Proof Explorer


Theorem xpeq1i

Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008)

Ref Expression
Hypothesis xpeq1i.1 A = B
Assertion xpeq1i A × C = B × C

Proof

Step Hyp Ref Expression
1 xpeq1i.1 A = B
2 xpeq1 A = B A × C = B × C
3 1 2 ax-mp A × C = B × C