Metamath Proof Explorer


Theorem xpexgALT

Description: Alternate proof of xpexg requiring Replacement ( ax-rep ) but not Power Set ( ax-pow ). (Contributed by Mario Carneiro, 20-May-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion xpexgALT A V B W A × B V

Proof

Step Hyp Ref Expression
1 iunid y B y = B
2 1 xpeq2i A × y B y = A × B
3 xpiundi A × y B y = y B A × y
4 2 3 eqtr3i A × B = y B A × y
5 id B W B W
6 fconstmpt A × y = x A y
7 mptexg A V x A y V
8 6 7 eqeltrid A V A × y V
9 8 ralrimivw A V y B A × y V
10 iunexg B W y B A × y V y B A × y V
11 5 9 10 syl2anr A V B W y B A × y V
12 4 11 eqeltrid A V B W A × B V