Metamath Proof Explorer


Theorem xpexr2

Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion xpexr2 A × B C A × B A V B V

Proof

Step Hyp Ref Expression
1 xpnz A B A × B
2 dmxp B dom A × B = A
3 2 adantl A × B C B dom A × B = A
4 dmexg A × B C dom A × B V
5 4 adantr A × B C B dom A × B V
6 3 5 eqeltrrd A × B C B A V
7 rnxp A ran A × B = B
8 7 adantl A × B C A ran A × B = B
9 rnexg A × B C ran A × B V
10 9 adantr A × B C A ran A × B V
11 8 10 eqeltrrd A × B C A B V
12 6 11 anim12dan A × B C B A A V B V
13 12 ancom2s A × B C A B A V B V
14 1 13 sylan2br A × B C A × B A V B V