Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
xpidtr
Next ⟩
trin2
Metamath Proof Explorer
Ascii
Unicode
Theorem
xpidtr
Description:
A Cartesian square is a transitive relation.
(Contributed by
FL
, 31-Jul-2009)
Ref
Expression
Assertion
xpidtr
⊢
A
×
A
∘
A
×
A
⊆
A
×
A
Proof
Step
Hyp
Ref
Expression
1
brxp
⊢
x
A
×
A
y
↔
x
∈
A
∧
y
∈
A
2
brxp
⊢
y
A
×
A
z
↔
y
∈
A
∧
z
∈
A
3
brxp
⊢
x
A
×
A
z
↔
x
∈
A
∧
z
∈
A
4
3
simplbi2com
⊢
z
∈
A
→
x
∈
A
→
x
A
×
A
z
5
2
4
simplbiim
⊢
y
A
×
A
z
→
x
∈
A
→
x
A
×
A
z
6
5
com12
⊢
x
∈
A
→
y
A
×
A
z
→
x
A
×
A
z
7
6
adantr
⊢
x
∈
A
∧
y
∈
A
→
y
A
×
A
z
→
x
A
×
A
z
8
1
7
sylbi
⊢
x
A
×
A
y
→
y
A
×
A
z
→
x
A
×
A
z
9
8
imp
⊢
x
A
×
A
y
∧
y
A
×
A
z
→
x
A
×
A
z
10
9
ax-gen
⊢
∀
z
x
A
×
A
y
∧
y
A
×
A
z
→
x
A
×
A
z
11
10
gen2
⊢
∀
x
∀
y
∀
z
x
A
×
A
y
∧
y
A
×
A
z
→
x
A
×
A
z
12
cotr
⊢
A
×
A
∘
A
×
A
⊆
A
×
A
↔
∀
x
∀
y
∀
z
x
A
×
A
y
∧
y
A
×
A
z
→
x
A
×
A
z
13
11
12
mpbir
⊢
A
×
A
∘
A
×
A
⊆
A
×
A