Metamath Proof Explorer


Theorem xpidtr

Description: A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009)

Ref Expression
Assertion xpidtr A × A A × A A × A

Proof

Step Hyp Ref Expression
1 brxp x A × A y x A y A
2 brxp y A × A z y A z A
3 brxp x A × A z x A z A
4 3 simplbi2com z A x A x A × A z
5 2 4 simplbiim y A × A z x A x A × A z
6 5 com12 x A y A × A z x A × A z
7 6 adantr x A y A y A × A z x A × A z
8 1 7 sylbi x A × A y y A × A z x A × A z
9 8 imp x A × A y y A × A z x A × A z
10 9 ax-gen z x A × A y y A × A z x A × A z
11 10 gen2 x y z x A × A y y A × A z x A × A z
12 cotr A × A A × A A × A x y z x A × A y y A × A z x A × A z
13 11 12 mpbir A × A A × A A × A