Metamath Proof Explorer


Theorem xpiindi

Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion xpiindi A C × x A B = x A C × B

Proof

Step Hyp Ref Expression
1 relxp Rel C × B
2 1 rgenw x A Rel C × B
3 r19.2z A x A Rel C × B x A Rel C × B
4 2 3 mpan2 A x A Rel C × B
5 reliin x A Rel C × B Rel x A C × B
6 4 5 syl A Rel x A C × B
7 relxp Rel C × x A B
8 6 7 jctil A Rel C × x A B Rel x A C × B
9 r19.28zv A x A y C z B y C x A z B
10 9 bicomd A y C x A z B x A y C z B
11 eliin z V z x A B x A z B
12 11 elv z x A B x A z B
13 12 anbi2i y C z x A B y C x A z B
14 opelxp y z C × B y C z B
15 14 ralbii x A y z C × B x A y C z B
16 10 13 15 3bitr4g A y C z x A B x A y z C × B
17 opelxp y z C × x A B y C z x A B
18 opex y z V
19 eliin y z V y z x A C × B x A y z C × B
20 18 19 ax-mp y z x A C × B x A y z C × B
21 16 17 20 3bitr4g A y z C × x A B y z x A C × B
22 21 eqrelrdv2 Rel C × x A B Rel x A C × B A C × x A B = x A C × B
23 8 22 mpancom A C × x A B = x A C × B