Metamath Proof Explorer


Theorem xpmapen

Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of Mendelson p. 255. (Contributed by NM, 23-Feb-2004) (Proof shortened by Mario Carneiro, 16-Nov-2014)

Ref Expression
Hypotheses xpmapen.1 A V
xpmapen.2 B V
xpmapen.3 C V
Assertion xpmapen A × B C A C × B C

Proof

Step Hyp Ref Expression
1 xpmapen.1 A V
2 xpmapen.2 B V
3 xpmapen.3 C V
4 2fveq3 w = z 1 st x w = 1 st x z
5 4 cbvmptv w C 1 st x w = z C 1 st x z
6 2fveq3 w = z 2 nd x w = 2 nd x z
7 6 cbvmptv w C 2 nd x w = z C 2 nd x z
8 fveq2 w = z 1 st y w = 1 st y z
9 fveq2 w = z 2 nd y w = 2 nd y z
10 8 9 opeq12d w = z 1 st y w 2 nd y w = 1 st y z 2 nd y z
11 10 cbvmptv w C 1 st y w 2 nd y w = z C 1 st y z 2 nd y z
12 1 2 3 5 7 11 xpmapenlem A × B C A C × B C