Metamath Proof Explorer


Theorem xpnum

Description: The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xpnum A dom card B dom card A × B dom card

Proof

Step Hyp Ref Expression
1 isnum2 A dom card x On x A
2 isnum2 B dom card y On y B
3 reeanv x On y On x A y B x On x A y On y B
4 omcl x On y On x 𝑜 y On
5 omxpen x On y On x 𝑜 y x × y
6 xpen x A y B x × y A × B
7 entr x 𝑜 y x × y x × y A × B x 𝑜 y A × B
8 5 6 7 syl2an x On y On x A y B x 𝑜 y A × B
9 isnumi x 𝑜 y On x 𝑜 y A × B A × B dom card
10 4 8 9 syl2an2r x On y On x A y B A × B dom card
11 10 ex x On y On x A y B A × B dom card
12 11 rexlimivv x On y On x A y B A × B dom card
13 3 12 sylbir x On x A y On y B A × B dom card
14 1 2 13 syl2anb A dom card B dom card A × B dom card