Metamath Proof Explorer


Theorem xpord2ind

Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses xpord2ind.1 R Fr A
xpord2ind.2 R Po A
xpord2ind.3 R Se A
xpord2ind.4 S Fr B
xpord2ind.5 S Po B
xpord2ind.6 S Se B
xpord2ind.7 a = c φ ψ
xpord2ind.8 b = d ψ χ
xpord2ind.9 a = c θ χ
xpord2ind.11 a = X φ τ
xpord2ind.12 b = Y τ η
xpord2ind.i a A b B c Pred R A a d Pred S B b χ c Pred R A a ψ d Pred S B b θ φ
Assertion xpord2ind X A Y B η

Proof

Step Hyp Ref Expression
1 xpord2ind.1 R Fr A
2 xpord2ind.2 R Po A
3 xpord2ind.3 R Se A
4 xpord2ind.4 S Fr B
5 xpord2ind.5 S Po B
6 xpord2ind.6 S Se B
7 xpord2ind.7 a = c φ ψ
8 xpord2ind.8 b = d ψ χ
9 xpord2ind.9 a = c θ χ
10 xpord2ind.11 a = X φ τ
11 xpord2ind.12 b = Y τ η
12 xpord2ind.i a A b B c Pred R A a d Pred S B b χ c Pred R A a ψ d Pred S B b θ φ
13 eqid x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y 2 nd x = 2 nd y x y = x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y 2 nd x = 2 nd y x y
14 13 1 2 3 4 5 6 7 8 9 10 11 12 xpord2indlem X A Y B η