Metamath Proof Explorer


Theorem xpord3ind

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024)

Ref Expression
Hypotheses xpord3ind.1 R Fr A
xpord3ind.2 R Po A
xpord3ind.3 R Se A
xpord3ind.4 S Fr B
xpord3ind.5 S Po B
xpord3ind.6 S Se B
xpord3ind.7 T Fr C
xpord3ind.8 T Po C
xpord3ind.9 T Se C
xpord3ind.10 a = d φ ψ
xpord3ind.11 b = e ψ χ
xpord3ind.12 c = f χ θ
xpord3ind.13 a = d τ θ
xpord3ind.14 b = e η τ
xpord3ind.15 b = e ζ θ
xpord3ind.16 c = f σ τ
xpord3ind.17 a = X φ ρ
xpord3ind.18 b = Y ρ μ
xpord3ind.19 c = Z μ λ
xpord3ind.i a A b B c C d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η φ
Assertion xpord3ind X A Y B Z C λ

Proof

Step Hyp Ref Expression
1 xpord3ind.1 R Fr A
2 xpord3ind.2 R Po A
3 xpord3ind.3 R Se A
4 xpord3ind.4 S Fr B
5 xpord3ind.5 S Po B
6 xpord3ind.6 S Se B
7 xpord3ind.7 T Fr C
8 xpord3ind.8 T Po C
9 xpord3ind.9 T Se C
10 xpord3ind.10 a = d φ ψ
11 xpord3ind.11 b = e ψ χ
12 xpord3ind.12 c = f χ θ
13 xpord3ind.13 a = d τ θ
14 xpord3ind.14 b = e η τ
15 xpord3ind.15 b = e ζ θ
16 xpord3ind.16 c = f σ τ
17 xpord3ind.17 a = X φ ρ
18 xpord3ind.18 b = Y ρ μ
19 xpord3ind.19 c = Z μ λ
20 xpord3ind.i a A b B c C d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η φ
21 simp1 X A Y B Z C X A
22 simp2 X A Y B Z C Y B
23 simp3 X A Y B Z C Z C
24 ax-1 R Fr A X A Y B Z C R Fr A
25 1 24 ax-mp X A Y B Z C R Fr A
26 2 a1i X A Y B Z C R Po A
27 3 a1i X A Y B Z C R Se A
28 4 a1i X A Y B Z C S Fr B
29 5 a1i X A Y B Z C S Po B
30 6 a1i X A Y B Z C S Se B
31 7 a1i X A Y B Z C T Fr C
32 8 a1i X A Y B Z C T Po C
33 9 a1i X A Y B Z C T Se C
34 20 adantl X A Y B Z C a A b B c C d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η φ
35 21 22 23 25 26 27 28 29 30 31 32 33 10 11 12 13 14 15 16 17 18 19 34 xpord3indd X A Y B Z C λ