Metamath Proof Explorer


Theorem xpord3indd

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses xpord3indd.x κ X A
xpord3indd.y κ Y B
xpord3indd.z κ Z C
xpord3indd.1 κ R Fr A
xpord3indd.2 κ R Po A
xpord3indd.3 κ R Se A
xpord3indd.4 κ S Fr B
xpord3indd.5 κ S Po B
xpord3indd.6 κ S Se B
xpord3indd.7 κ T Fr C
xpord3indd.8 κ T Po C
xpord3indd.9 κ T Se C
xpord3indd.10 a = d φ ψ
xpord3indd.11 b = e ψ χ
xpord3indd.12 c = f χ θ
xpord3indd.13 a = d τ θ
xpord3indd.14 b = e η τ
xpord3indd.15 b = e ζ θ
xpord3indd.16 c = f σ τ
xpord3indd.17 a = X φ ρ
xpord3indd.18 b = Y ρ μ
xpord3indd.19 c = Z μ λ
xpord3indd.i κ a A b B c C d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η φ
Assertion xpord3indd κ λ

Proof

Step Hyp Ref Expression
1 xpord3indd.x κ X A
2 xpord3indd.y κ Y B
3 xpord3indd.z κ Z C
4 xpord3indd.1 κ R Fr A
5 xpord3indd.2 κ R Po A
6 xpord3indd.3 κ R Se A
7 xpord3indd.4 κ S Fr B
8 xpord3indd.5 κ S Po B
9 xpord3indd.6 κ S Se B
10 xpord3indd.7 κ T Fr C
11 xpord3indd.8 κ T Po C
12 xpord3indd.9 κ T Se C
13 xpord3indd.10 a = d φ ψ
14 xpord3indd.11 b = e ψ χ
15 xpord3indd.12 c = f χ θ
16 xpord3indd.13 a = d τ θ
17 xpord3indd.14 b = e η τ
18 xpord3indd.15 b = e ζ θ
19 xpord3indd.16 c = f σ τ
20 xpord3indd.17 a = X φ ρ
21 xpord3indd.18 b = Y ρ μ
22 xpord3indd.19 c = Z μ λ
23 xpord3indd.i κ a A b B c C d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η φ
24 eqid x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
25 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 xpord3inddlem κ λ