Metamath Proof Explorer


Theorem xpord3inddlem

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
xpord3inddlem.x κ X A
xpord3inddlem.y κ Y B
xpord3inddlem.z κ Z C
xpord3inddlem.1 κ R Fr A
xpord3inddlem.2 κ R Po A
xpord3inddlem.3 κ R Se A
xpord3inddlem.4 κ S Fr B
xpord3inddlem.5 κ S Po B
xpord3inddlem.6 κ S Se B
xpord3inddlem.7 κ T Fr C
xpord3inddlem.8 κ T Po C
xpord3inddlem.9 κ T Se C
xpord3inddlem.10 a = d φ ψ
xpord3inddlem.11 b = e ψ χ
xpord3inddlem.12 c = f χ θ
xpord3inddlem.13 a = d τ θ
xpord3inddlem.14 b = e η τ
xpord3inddlem.15 b = e ζ θ
xpord3inddlem.16 c = f σ τ
xpord3inddlem.17 a = X φ ρ
xpord3inddlem.18 b = Y ρ μ
xpord3inddlem.19 c = Z μ λ
xpord3inddlem.i κ a A b B c C d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η φ
Assertion xpord3inddlem κ λ

Proof

Step Hyp Ref Expression
1 xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
2 xpord3inddlem.x κ X A
3 xpord3inddlem.y κ Y B
4 xpord3inddlem.z κ Z C
5 xpord3inddlem.1 κ R Fr A
6 xpord3inddlem.2 κ R Po A
7 xpord3inddlem.3 κ R Se A
8 xpord3inddlem.4 κ S Fr B
9 xpord3inddlem.5 κ S Po B
10 xpord3inddlem.6 κ S Se B
11 xpord3inddlem.7 κ T Fr C
12 xpord3inddlem.8 κ T Po C
13 xpord3inddlem.9 κ T Se C
14 xpord3inddlem.10 a = d φ ψ
15 xpord3inddlem.11 b = e ψ χ
16 xpord3inddlem.12 c = f χ θ
17 xpord3inddlem.13 a = d τ θ
18 xpord3inddlem.14 b = e η τ
19 xpord3inddlem.15 b = e ζ θ
20 xpord3inddlem.16 c = f σ τ
21 xpord3inddlem.17 a = X φ ρ
22 xpord3inddlem.18 b = Y ρ μ
23 xpord3inddlem.19 c = Z μ λ
24 xpord3inddlem.i κ a A b B c C d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η φ
25 1 5 8 11 frxp3 κ U Fr A × B × C
26 1 6 9 12 poxp3 κ U Po A × B × C
27 1 7 10 13 sexp3 κ U Se A × B × C
28 bi2.04 d e f Pred U A × B × C a b c κ θ κ d e f Pred U A × B × C a b c θ
29 28 3albii d e f d e f Pred U A × B × C a b c κ θ d e f κ d e f Pred U A × B × C a b c θ
30 19.21v f κ d e f Pred U A × B × C a b c θ κ f d e f Pred U A × B × C a b c θ
31 30 2albii d e f κ d e f Pred U A × B × C a b c θ d e κ f d e f Pred U A × B × C a b c θ
32 19.21v e κ f d e f Pred U A × B × C a b c θ κ e f d e f Pred U A × B × C a b c θ
33 32 albii d e κ f d e f Pred U A × B × C a b c θ d κ e f d e f Pred U A × B × C a b c θ
34 19.21v d κ e f d e f Pred U A × B × C a b c θ κ d e f d e f Pred U A × B × C a b c θ
35 33 34 bitri d e κ f d e f Pred U A × B × C a b c θ κ d e f d e f Pred U A × B × C a b c θ
36 31 35 bitri d e f κ d e f Pred U A × B × C a b c θ κ d e f d e f Pred U A × B × C a b c θ
37 29 36 bitri d e f d e f Pred U A × B × C a b c κ θ κ d e f d e f Pred U A × B × C a b c θ
38 1 xpord3pred a A b B c C Pred U A × B × C a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c
39 38 adantl κ a A b B c C Pred U A × B × C a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c
40 39 eleq2d κ a A b B c C d e f Pred U A × B × C a b c d e f Pred R A a a × Pred S B b b × Pred T C c c a b c
41 40 imbi1d κ a A b B c C d e f Pred U A × B × C a b c θ d e f Pred R A a a × Pred S B b b × Pred T C c c a b c θ
42 eldifsn d e f Pred R A a a × Pred S B b b × Pred T C c c a b c d e f Pred R A a a × Pred S B b b × Pred T C c c d e f a b c
43 otelxp d e f Pred R A a a × Pred S B b b × Pred T C c c d Pred R A a a e Pred S B b b f Pred T C c c
44 vex d V
45 vex e V
46 vex f V
47 44 45 46 otthne d e f a b c d a e b f c
48 43 47 anbi12i d e f Pred R A a a × Pred S B b b × Pred T C c c d e f a b c d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c
49 42 48 bitri d e f Pred R A a a × Pred S B b b × Pred T C c c a b c d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c
50 49 imbi1i d e f Pred R A a a × Pred S B b b × Pred T C c c a b c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
51 41 50 bitrdi κ a A b B c C d e f Pred U A × B × C a b c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
52 impexp d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
53 51 52 bitrdi κ a A b B c C d e f Pred U A × B × C a b c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
54 53 albidv κ a A b B c C f d e f Pred U A × B × C a b c θ f d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
55 54 2albidv κ a A b B c C d e f d e f Pred U A × B × C a b c θ d e f d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
56 r3al d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d e f d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
57 56 bicomi d e f d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
58 55 57 bitrdi κ a A b B c C d e f d e f Pred U A × B × C a b c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
59 ssun1 Pred T C c Pred T C c c
60 ssralv Pred T C c Pred T C c c f Pred T C c c d a e b f c θ f Pred T C c d a e b f c θ
61 59 60 ax-mp f Pred T C c c d a e b f c θ f Pred T C c d a e b f c θ
62 61 ralimi e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b b f Pred T C c d a e b f c θ
63 ssun1 Pred S B b Pred S B b b
64 ssralv Pred S B b Pred S B b b e Pred S B b b f Pred T C c d a e b f c θ e Pred S B b f Pred T C c d a e b f c θ
65 63 64 ax-mp e Pred S B b b f Pred T C c d a e b f c θ e Pred S B b f Pred T C c d a e b f c θ
66 62 65 syl e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c d a e b f c θ
67 66 ralimi d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a a e Pred S B b f Pred T C c d a e b f c θ
68 ssun1 Pred R A a Pred R A a a
69 ssralv Pred R A a Pred R A a a d Pred R A a a e Pred S B b f Pred T C c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c d a e b f c θ
70 68 69 ax-mp d Pred R A a a e Pred S B b f Pred T C c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c d a e b f c θ
71 67 70 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c d a e b f c θ
72 71 adantl κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c d a e b f c θ
73 predpoirr T Po C ¬ c Pred T C c
74 12 73 syl κ ¬ c Pred T C c
75 eleq1 f = c f Pred T C c c Pred T C c
76 75 notbid f = c ¬ f Pred T C c ¬ c Pred T C c
77 74 76 syl5ibrcom κ f = c ¬ f Pred T C c
78 77 necon2ad κ f Pred T C c f c
79 78 imp κ f Pred T C c f c
80 79 3mix3d κ f Pred T C c d a e b f c
81 pm2.27 d a e b f c d a e b f c θ θ
82 80 81 syl κ f Pred T C c d a e b f c θ θ
83 82 ralimdva κ f Pred T C c d a e b f c θ f Pred T C c θ
84 83 ralimdv κ e Pred S B b f Pred T C c d a e b f c θ e Pred S B b f Pred T C c θ
85 84 ralimdv κ d Pred R A a e Pred S B b f Pred T C c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ
86 85 adantr κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ
87 72 86 mpd κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ
88 ssun2 c Pred T C c c
89 ssralv c Pred T C c c f Pred T C c c d a e b f c θ f c d a e b f c θ
90 88 89 ax-mp f Pred T C c c d a e b f c θ f c d a e b f c θ
91 90 ralimi e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b b f c d a e b f c θ
92 ssralv Pred S B b Pred S B b b e Pred S B b b f c d a e b f c θ e Pred S B b f c d a e b f c θ
93 63 92 ax-mp e Pred S B b b f c d a e b f c θ e Pred S B b f c d a e b f c θ
94 91 93 syl e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f c d a e b f c θ
95 94 ralimi d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a a e Pred S B b f c d a e b f c θ
96 ssralv Pred R A a Pred R A a a d Pred R A a a e Pred S B b f c d a e b f c θ d Pred R A a e Pred S B b f c d a e b f c θ
97 68 96 ax-mp d Pred R A a a e Pred S B b f c d a e b f c θ d Pred R A a e Pred S B b f c d a e b f c θ
98 95 97 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f c d a e b f c θ
99 vex c V
100 biidd f = c d a d a
101 biidd f = c e b e b
102 neeq1 f = c f c c c
103 100 101 102 3orbi123d f = c d a e b f c d a e b c c
104 16 equcoms f = c χ θ
105 104 bicomd f = c θ χ
106 103 105 imbi12d f = c d a e b f c θ d a e b c c χ
107 99 106 ralsn f c d a e b f c θ d a e b c c χ
108 107 2ralbii d Pred R A a e Pred S B b f c d a e b f c θ d Pred R A a e Pred S B b d a e b c c χ
109 98 108 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b d a e b c c χ
110 109 adantl κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b d a e b c c χ
111 predpoirr S Po B ¬ b Pred S B b
112 9 111 syl κ ¬ b Pred S B b
113 eleq1 e = b e Pred S B b b Pred S B b
114 113 notbid e = b ¬ e Pred S B b ¬ b Pred S B b
115 112 114 syl5ibrcom κ e = b ¬ e Pred S B b
116 115 necon2ad κ e Pred S B b e b
117 116 imp κ e Pred S B b e b
118 117 3mix2d κ e Pred S B b d a e b c c
119 pm2.27 d a e b c c d a e b c c χ χ
120 118 119 syl κ e Pred S B b d a e b c c χ χ
121 120 ralimdva κ e Pred S B b d a e b c c χ e Pred S B b χ
122 121 ralimdv κ d Pred R A a e Pred S B b d a e b c c χ d Pred R A a e Pred S B b χ
123 122 adantr κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b d a e b c c χ d Pred R A a e Pred S B b χ
124 110 123 mpd κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b χ
125 ssun2 b Pred S B b b
126 ssralv b Pred S B b b e Pred S B b b f Pred T C c d a e b f c θ e b f Pred T C c d a e b f c θ
127 125 126 ax-mp e Pred S B b b f Pred T C c d a e b f c θ e b f Pred T C c d a e b f c θ
128 62 127 syl e Pred S B b b f Pred T C c c d a e b f c θ e b f Pred T C c d a e b f c θ
129 128 ralimi d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a a e b f Pred T C c d a e b f c θ
130 ssralv Pred R A a Pred R A a a d Pred R A a a e b f Pred T C c d a e b f c θ d Pred R A a e b f Pred T C c d a e b f c θ
131 68 130 ax-mp d Pred R A a a e b f Pred T C c d a e b f c θ d Pred R A a e b f Pred T C c d a e b f c θ
132 129 131 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e b f Pred T C c d a e b f c θ
133 vex b V
134 biidd e = b d a d a
135 neeq1 e = b e b b b
136 biidd e = b f c f c
137 134 135 136 3orbi123d e = b d a e b f c d a b b f c
138 19 equcoms e = b ζ θ
139 138 bicomd e = b θ ζ
140 137 139 imbi12d e = b d a e b f c θ d a b b f c ζ
141 140 ralbidv e = b f Pred T C c d a e b f c θ f Pred T C c d a b b f c ζ
142 133 141 ralsn e b f Pred T C c d a e b f c θ f Pred T C c d a b b f c ζ
143 142 ralbii d Pred R A a e b f Pred T C c d a e b f c θ d Pred R A a f Pred T C c d a b b f c ζ
144 132 143 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a f Pred T C c d a b b f c ζ
145 144 adantl κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a f Pred T C c d a b b f c ζ
146 79 3mix3d κ f Pred T C c d a b b f c
147 pm2.27 d a b b f c d a b b f c ζ ζ
148 146 147 syl κ f Pred T C c d a b b f c ζ ζ
149 148 ralimdva κ f Pred T C c d a b b f c ζ f Pred T C c ζ
150 149 ralimdv κ d Pred R A a f Pred T C c d a b b f c ζ d Pred R A a f Pred T C c ζ
151 150 adantr κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a f Pred T C c d a b b f c ζ d Pred R A a f Pred T C c ζ
152 145 151 mpd κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a f Pred T C c ζ
153 87 124 152 3jca κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ
154 ssralv b Pred S B b b e Pred S B b b f c d a e b f c θ e b f c d a e b f c θ
155 125 154 ax-mp e Pred S B b b f c d a e b f c θ e b f c d a e b f c θ
156 91 155 syl e Pred S B b b f Pred T C c c d a e b f c θ e b f c d a e b f c θ
157 156 ralimi d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a a e b f c d a e b f c θ
158 ssralv Pred R A a Pred R A a a d Pred R A a a e b f c d a e b f c θ d Pred R A a e b f c d a e b f c θ
159 68 158 ax-mp d Pred R A a a e b f c d a e b f c θ d Pred R A a e b f c d a e b f c θ
160 157 159 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e b f c d a e b f c θ
161 107 ralbii e b f c d a e b f c θ e b d a e b c c χ
162 biidd e = b c c c c
163 134 135 162 3orbi123d e = b d a e b c c d a b b c c
164 15 equcoms e = b ψ χ
165 164 bicomd e = b χ ψ
166 163 165 imbi12d e = b d a e b c c χ d a b b c c ψ
167 133 166 ralsn e b d a e b c c χ d a b b c c ψ
168 161 167 bitri e b f c d a e b f c θ d a b b c c ψ
169 168 ralbii d Pred R A a e b f c d a e b f c θ d Pred R A a d a b b c c ψ
170 160 169 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a d a b b c c ψ
171 170 adantl κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a d a b b c c ψ
172 predpoirr R Po A ¬ a Pred R A a
173 6 172 syl κ ¬ a Pred R A a
174 eleq1 d = a d Pred R A a a Pred R A a
175 174 notbid d = a ¬ d Pred R A a ¬ a Pred R A a
176 173 175 syl5ibrcom κ d = a ¬ d Pred R A a
177 176 necon2ad κ d Pred R A a d a
178 177 imp κ d Pred R A a d a
179 178 3mix1d κ d Pred R A a d a b b c c
180 pm2.27 d a b b c c d a b b c c ψ ψ
181 179 180 syl κ d Pred R A a d a b b c c ψ ψ
182 181 ralimdva κ d Pred R A a d a b b c c ψ d Pred R A a ψ
183 182 adantr κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a d a b b c c ψ d Pred R A a ψ
184 171 183 mpd κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a ψ
185 ssun2 a Pred R A a a
186 ssralv a Pred R A a a d Pred R A a a e Pred S B b f Pred T C c d a e b f c θ d a e Pred S B b f Pred T C c d a e b f c θ
187 185 186 ax-mp d Pred R A a a e Pred S B b f Pred T C c d a e b f c θ d a e Pred S B b f Pred T C c d a e b f c θ
188 67 187 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d a e Pred S B b f Pred T C c d a e b f c θ
189 vex a V
190 neeq1 d = a d a a a
191 biidd d = a e b e b
192 biidd d = a f c f c
193 190 191 192 3orbi123d d = a d a e b f c a a e b f c
194 17 equcoms d = a τ θ
195 194 bicomd d = a θ τ
196 193 195 imbi12d d = a d a e b f c θ a a e b f c τ
197 196 2ralbidv d = a e Pred S B b f Pred T C c d a e b f c θ e Pred S B b f Pred T C c a a e b f c τ
198 189 197 ralsn d a e Pred S B b f Pred T C c d a e b f c θ e Pred S B b f Pred T C c a a e b f c τ
199 188 198 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c a a e b f c τ
200 199 adantl κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c a a e b f c τ
201 79 3mix3d κ f Pred T C c a a e b f c
202 pm2.27 a a e b f c a a e b f c τ τ
203 201 202 syl κ f Pred T C c a a e b f c τ τ
204 203 ralimdva κ f Pred T C c a a e b f c τ f Pred T C c τ
205 204 ralimdv κ e Pred S B b f Pred T C c a a e b f c τ e Pred S B b f Pred T C c τ
206 205 adantr κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c a a e b f c τ e Pred S B b f Pred T C c τ
207 200 206 mpd κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c τ
208 ssralv a Pred R A a a d Pred R A a a e Pred S B b f c d a e b f c θ d a e Pred S B b f c d a e b f c θ
209 185 208 ax-mp d Pred R A a a e Pred S B b f c d a e b f c θ d a e Pred S B b f c d a e b f c θ
210 95 209 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d a e Pred S B b f c d a e b f c θ
211 196 2ralbidv d = a e Pred S B b f c d a e b f c θ e Pred S B b f c a a e b f c τ
212 189 211 ralsn d a e Pred S B b f c d a e b f c θ e Pred S B b f c a a e b f c τ
213 biidd f = c a a a a
214 213 101 102 3orbi123d f = c a a e b f c a a e b c c
215 20 bicomd c = f τ σ
216 215 equcoms f = c τ σ
217 214 216 imbi12d f = c a a e b f c τ a a e b c c σ
218 99 217 ralsn f c a a e b f c τ a a e b c c σ
219 218 ralbii e Pred S B b f c a a e b f c τ e Pred S B b a a e b c c σ
220 212 219 bitri d a e Pred S B b f c d a e b f c θ e Pred S B b a a e b c c σ
221 210 220 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b a a e b c c σ
222 221 adantl κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b a a e b c c σ
223 117 3mix2d κ e Pred S B b a a e b c c
224 pm2.27 a a e b c c a a e b c c σ σ
225 223 224 syl κ e Pred S B b a a e b c c σ σ
226 225 ralimdva κ e Pred S B b a a e b c c σ e Pred S B b σ
227 226 adantr κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b a a e b c c σ e Pred S B b σ
228 222 227 mpd κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b σ
229 184 207 228 3jca κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ
230 ssralv a Pred R A a a d Pred R A a a e b f Pred T C c d a e b f c θ d a e b f Pred T C c d a e b f c θ
231 185 230 ax-mp d Pred R A a a e b f Pred T C c d a e b f c θ d a e b f Pred T C c d a e b f c θ
232 129 231 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d a e b f Pred T C c d a e b f c θ
233 196 2ralbidv d = a e b f Pred T C c d a e b f c θ e b f Pred T C c a a e b f c τ
234 189 233 ralsn d a e b f Pred T C c d a e b f c θ e b f Pred T C c a a e b f c τ
235 biidd e = b a a a a
236 235 135 136 3orbi123d e = b a a e b f c a a b b f c
237 equcomi e = b b = e
238 bicom1 η τ τ η
239 237 18 238 3syl e = b τ η
240 236 239 imbi12d e = b a a e b f c τ a a b b f c η
241 240 ralbidv e = b f Pred T C c a a e b f c τ f Pred T C c a a b b f c η
242 133 241 ralsn e b f Pred T C c a a e b f c τ f Pred T C c a a b b f c η
243 234 242 bitri d a e b f Pred T C c d a e b f c θ f Pred T C c a a b b f c η
244 232 243 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ f Pred T C c a a b b f c η
245 244 adantl κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ f Pred T C c a a b b f c η
246 79 3mix3d κ f Pred T C c a a b b f c
247 pm2.27 a a b b f c a a b b f c η η
248 246 247 syl κ f Pred T C c a a b b f c η η
249 248 ralimdva κ f Pred T C c a a b b f c η f Pred T C c η
250 249 adantr κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ f Pred T C c a a b b f c η f Pred T C c η
251 245 250 mpd κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ f Pred T C c η
252 153 229 251 3jca κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η
253 252 ex κ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η
254 253 adantr κ a A b B c C d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η
255 254 24 syld κ a A b B c C d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ φ
256 58 255 sylbid κ a A b B c C d e f d e f Pred U A × B × C a b c θ φ
257 256 expcom a A b B c C κ d e f d e f Pred U A × B × C a b c θ φ
258 257 a2d a A b B c C κ d e f d e f Pred U A × B × C a b c θ κ φ
259 37 258 biimtrid a A b B c C d e f d e f Pred U A × B × C a b c κ θ κ φ
260 14 imbi2d a = d κ φ κ ψ
261 15 imbi2d b = e κ ψ κ χ
262 16 imbi2d c = f κ χ κ θ
263 21 imbi2d a = X κ φ κ ρ
264 22 imbi2d b = Y κ ρ κ μ
265 23 imbi2d c = Z κ μ κ λ
266 259 260 261 262 263 264 265 frpoins3xp3g U Fr A × B × C U Po A × B × C U Se A × B × C X A Y B Z C κ λ
267 25 26 27 2 3 4 266 syl33anc κ κ λ
268 267 pm2.43i κ λ