Metamath Proof Explorer


Theorem xpord3pred

Description: Calculate the predecsessor class for the triple order. (Contributed by Scott Fenton, 31-Jan-2025)

Ref Expression
Hypothesis xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
Assertion xpord3pred X A Y B Z C Pred U A × B × C X Y Z = Pred R A X X × Pred S B Y Y × Pred T C Z Z X Y Z

Proof

Step Hyp Ref Expression
1 xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
2 oteq1 a = X a b c = X b c
3 predeq3 a b c = X b c Pred U A × B × C a b c = Pred U A × B × C X b c
4 2 3 syl a = X Pred U A × B × C a b c = Pred U A × B × C X b c
5 predeq3 a = X Pred R A a = Pred R A X
6 sneq a = X a = X
7 5 6 uneq12d a = X Pred R A a a = Pred R A X X
8 7 xpeq1d a = X Pred R A a a × Pred S B b b = Pred R A X X × Pred S B b b
9 8 xpeq1d a = X Pred R A a a × Pred S B b b × Pred T C c c = Pred R A X X × Pred S B b b × Pred T C c c
10 2 sneqd a = X a b c = X b c
11 9 10 difeq12d a = X Pred R A a a × Pred S B b b × Pred T C c c a b c = Pred R A X X × Pred S B b b × Pred T C c c X b c
12 4 11 eqeq12d a = X Pred U A × B × C a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c Pred U A × B × C X b c = Pred R A X X × Pred S B b b × Pred T C c c X b c
13 oteq2 b = Y X b c = X Y c
14 predeq3 X b c = X Y c Pred U A × B × C X b c = Pred U A × B × C X Y c
15 13 14 syl b = Y Pred U A × B × C X b c = Pred U A × B × C X Y c
16 predeq3 b = Y Pred S B b = Pred S B Y
17 sneq b = Y b = Y
18 16 17 uneq12d b = Y Pred S B b b = Pred S B Y Y
19 18 xpeq2d b = Y Pred R A X X × Pred S B b b = Pred R A X X × Pred S B Y Y
20 19 xpeq1d b = Y Pred R A X X × Pred S B b b × Pred T C c c = Pred R A X X × Pred S B Y Y × Pred T C c c
21 13 sneqd b = Y X b c = X Y c
22 20 21 difeq12d b = Y Pred R A X X × Pred S B b b × Pred T C c c X b c = Pred R A X X × Pred S B Y Y × Pred T C c c X Y c
23 15 22 eqeq12d b = Y Pred U A × B × C X b c = Pred R A X X × Pred S B b b × Pred T C c c X b c Pred U A × B × C X Y c = Pred R A X X × Pred S B Y Y × Pred T C c c X Y c
24 oteq3 c = Z X Y c = X Y Z
25 predeq3 X Y c = X Y Z Pred U A × B × C X Y c = Pred U A × B × C X Y Z
26 24 25 syl c = Z Pred U A × B × C X Y c = Pred U A × B × C X Y Z
27 predeq3 c = Z Pred T C c = Pred T C Z
28 sneq c = Z c = Z
29 27 28 uneq12d c = Z Pred T C c c = Pred T C Z Z
30 29 xpeq2d c = Z Pred R A X X × Pred S B Y Y × Pred T C c c = Pred R A X X × Pred S B Y Y × Pred T C Z Z
31 24 sneqd c = Z X Y c = X Y Z
32 30 31 difeq12d c = Z Pred R A X X × Pred S B Y Y × Pred T C c c X Y c = Pred R A X X × Pred S B Y Y × Pred T C Z Z X Y Z
33 26 32 eqeq12d c = Z Pred U A × B × C X Y c = Pred R A X X × Pred S B Y Y × Pred T C c c X Y c Pred U A × B × C X Y Z = Pred R A X X × Pred S B Y Y × Pred T C Z Z X Y Z
34 el2xptp q A × B × C d A e B f C q = d e f
35 df-3an d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c
36 simplrl a A b B c C d A e B f C d A
37 simplrr a A b B c C d A e B f C e B
38 simpr a A b B c C d A e B f C f C
39 36 37 38 3jca a A b B c C d A e B f C d A e B f C
40 simpll a A b B c C d A e B f C a A b B c C
41 39 40 jca a A b B c C d A e B f C d A e B f C a A b B c C
42 41 biantrurd a A b B c C d A e B f C d R a d = a e S b e = b f T c f = c d a e b f c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c
43 36 biantrurd a A b B c C d A e B f C d R a d A d R a
44 43 orbi1d a A b B c C d A e B f C d R a d = a d A d R a d = a
45 37 biantrurd a A b B c C d A e B f C e S b e B e S b
46 45 orbi1d a A b B c C d A e B f C e S b e = b e B e S b e = b
47 38 biantrurd a A b B c C d A e B f C f T c f C f T c
48 47 orbi1d a A b B c C d A e B f C f T c f = c f C f T c f = c
49 44 46 48 3anbi123d a A b B c C d A e B f C d R a d = a e S b e = b f T c f = c d A d R a d = a e B e S b e = b f C f T c f = c
50 49 anbi1d a A b B c C d A e B f C d R a d = a e S b e = b f T c f = c d a e b f c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
51 42 50 bitr3d a A b B c C d A e B f C d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
52 35 51 bitrid a A b B c C d A e B f C d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
53 breq1 q = d e f q U a b c d e f U a b c
54 1 xpord3lem d e f U a b c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c
55 53 54 bitrdi q = d e f q U a b c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c
56 eleq1 q = d e f q Pred R A a a × Pred S B b b × Pred T C c c a b c d e f Pred R A a a × Pred S B b b × Pred T C c c a b c
57 eldifsn d e f Pred R A a a × Pred S B b b × Pred T C c c a b c d e f Pred R A a a × Pred S B b b × Pred T C c c d e f a b c
58 otelxp d e f Pred R A a a × Pred S B b b × Pred T C c c d Pred R A a a e Pred S B b b f Pred T C c c
59 elun d Pred R A a a d Pred R A a d a
60 vex d V
61 60 elpred a V d Pred R A a d A d R a
62 61 elv d Pred R A a d A d R a
63 velsn d a d = a
64 62 63 orbi12i d Pred R A a d a d A d R a d = a
65 59 64 bitri d Pred R A a a d A d R a d = a
66 elun e Pred S B b b e Pred S B b e b
67 vex e V
68 67 elpred b V e Pred S B b e B e S b
69 68 elv e Pred S B b e B e S b
70 velsn e b e = b
71 69 70 orbi12i e Pred S B b e b e B e S b e = b
72 66 71 bitri e Pred S B b b e B e S b e = b
73 elun f Pred T C c c f Pred T C c f c
74 vex f V
75 74 elpred c V f Pred T C c f C f T c
76 75 elv f Pred T C c f C f T c
77 velsn f c f = c
78 76 77 orbi12i f Pred T C c f c f C f T c f = c
79 73 78 bitri f Pred T C c c f C f T c f = c
80 65 72 79 3anbi123i d Pred R A a a e Pred S B b b f Pred T C c c d A d R a d = a e B e S b e = b f C f T c f = c
81 58 80 bitri d e f Pred R A a a × Pred S B b b × Pred T C c c d A d R a d = a e B e S b e = b f C f T c f = c
82 60 67 74 otthne d e f a b c d a e b f c
83 81 82 anbi12i d e f Pred R A a a × Pred S B b b × Pred T C c c d e f a b c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
84 57 83 bitri d e f Pred R A a a × Pred S B b b × Pred T C c c a b c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
85 56 84 bitrdi q = d e f q Pred R A a a × Pred S B b b × Pred T C c c a b c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
86 55 85 bibi12d q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
87 52 86 syl5ibrcom a A b B c C d A e B f C q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
88 87 rexlimdva a A b B c C d A e B f C q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
89 88 rexlimdvva a A b B c C d A e B f C q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
90 34 89 biimtrid a A b B c C q A × B × C q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
91 90 pm5.32d a A b B c C q A × B × C q U a b c q A × B × C q Pred R A a a × Pred S B b b × Pred T C c c a b c
92 otex a b c V
93 vex q V
94 93 elpred a b c V q Pred U A × B × C a b c q A × B × C q U a b c
95 92 94 ax-mp q Pred U A × B × C a b c q A × B × C q U a b c
96 elin q A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c q A × B × C q Pred R A a a × Pred S B b b × Pred T C c c a b c
97 91 95 96 3bitr4g a A b B c C q Pred U A × B × C a b c q A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c
98 97 eqrdv a A b B c C Pred U A × B × C a b c = A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c
99 predss Pred R A a A
100 99 a1i a A Pred R A a A
101 snssi a A a A
102 100 101 unssd a A Pred R A a a A
103 102 3ad2ant1 a A b B c C Pred R A a a A
104 predss Pred S B b B
105 104 a1i b B Pred S B b B
106 snssi b B b B
107 105 106 unssd b B Pred S B b b B
108 107 3ad2ant2 a A b B c C Pred S B b b B
109 xpss12 Pred R A a a A Pred S B b b B Pred R A a a × Pred S B b b A × B
110 103 108 109 syl2anc a A b B c C Pred R A a a × Pred S B b b A × B
111 predss Pred T C c C
112 111 a1i c C Pred T C c C
113 snssi c C c C
114 112 113 unssd c C Pred T C c c C
115 114 3ad2ant3 a A b B c C Pred T C c c C
116 xpss12 Pred R A a a × Pred S B b b A × B Pred T C c c C Pred R A a a × Pred S B b b × Pred T C c c A × B × C
117 110 115 116 syl2anc a A b B c C Pred R A a a × Pred S B b b × Pred T C c c A × B × C
118 117 ssdifssd a A b B c C Pred R A a a × Pred S B b b × Pred T C c c a b c A × B × C
119 sseqin2 Pred R A a a × Pred S B b b × Pred T C c c a b c A × B × C A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c
120 118 119 sylib a A b B c C A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c
121 98 120 eqtrd a A b B c C Pred U A × B × C a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c
122 12 23 33 121 vtocl3ga X A Y B Z C Pred U A × B × C X Y Z = Pred R A X X × Pred S B Y Y × Pred T C Z Z X Y Z