Metamath Proof Explorer


Theorem xposdif

Description: Extended real version of posdif . (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion xposdif A * B * A < B 0 < B + 𝑒 A

Proof

Step Hyp Ref Expression
1 xnegcl B * B *
2 xaddcl A * B * A + 𝑒 B *
3 1 2 sylan2 A * B * A + 𝑒 B *
4 xlt0neg1 A + 𝑒 B * A + 𝑒 B < 0 0 < A + 𝑒 B
5 3 4 syl A * B * A + 𝑒 B < 0 0 < A + 𝑒 B
6 xsubge0 A * B * 0 A + 𝑒 B B A
7 6 notbid A * B * ¬ 0 A + 𝑒 B ¬ B A
8 0xr 0 *
9 xrltnle A + 𝑒 B * 0 * A + 𝑒 B < 0 ¬ 0 A + 𝑒 B
10 3 8 9 sylancl A * B * A + 𝑒 B < 0 ¬ 0 A + 𝑒 B
11 xrltnle A * B * A < B ¬ B A
12 7 10 11 3bitr4d A * B * A + 𝑒 B < 0 A < B
13 xnegdi A * B * A + 𝑒 B = A + 𝑒 B
14 1 13 sylan2 A * B * A + 𝑒 B = A + 𝑒 B
15 xnegneg B * B = B
16 15 oveq2d B * A + 𝑒 B = A + 𝑒 B
17 16 adantl A * B * A + 𝑒 B = A + 𝑒 B
18 xnegcl A * A *
19 xaddcom A * B * A + 𝑒 B = B + 𝑒 A
20 18 19 sylan A * B * A + 𝑒 B = B + 𝑒 A
21 14 17 20 3eqtrd A * B * A + 𝑒 B = B + 𝑒 A
22 21 breq2d A * B * 0 < A + 𝑒 B 0 < B + 𝑒 A
23 5 12 22 3bitr3d A * B * A < B 0 < B + 𝑒 A