Metamath Proof Explorer


Theorem xppreima

Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 6-Jun-2017)

Ref Expression
Assertion xppreima Fun F ran F V × V F -1 Y × Z = 1 st F -1 Y 2 nd F -1 Z

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 fncnvima2 F Fn dom F F -1 Y × Z = x dom F | F x Y × Z
3 1 2 sylbi Fun F F -1 Y × Z = x dom F | F x Y × Z
4 3 adantr Fun F ran F V × V F -1 Y × Z = x dom F | F x Y × Z
5 elxp6 F x Y × Z F x = 1 st F x 2 nd F x 1 st F x Y 2 nd F x Z
6 fvco Fun F x dom F 1 st F x = 1 st F x
7 fvco Fun F x dom F 2 nd F x = 2 nd F x
8 6 7 opeq12d Fun F x dom F 1 st F x 2 nd F x = 1 st F x 2 nd F x
9 8 eqeq2d Fun F x dom F F x = 1 st F x 2 nd F x F x = 1 st F x 2 nd F x
10 6 eleq1d Fun F x dom F 1 st F x Y 1 st F x Y
11 7 eleq1d Fun F x dom F 2 nd F x Z 2 nd F x Z
12 10 11 anbi12d Fun F x dom F 1 st F x Y 2 nd F x Z 1 st F x Y 2 nd F x Z
13 9 12 anbi12d Fun F x dom F F x = 1 st F x 2 nd F x 1 st F x Y 2 nd F x Z F x = 1 st F x 2 nd F x 1 st F x Y 2 nd F x Z
14 5 13 bitr4id Fun F x dom F F x Y × Z F x = 1 st F x 2 nd F x 1 st F x Y 2 nd F x Z
15 14 adantlr Fun F ran F V × V x dom F F x Y × Z F x = 1 st F x 2 nd F x 1 st F x Y 2 nd F x Z
16 opfv Fun F ran F V × V x dom F F x = 1 st F x 2 nd F x
17 16 biantrurd Fun F ran F V × V x dom F 1 st F x Y 2 nd F x Z F x = 1 st F x 2 nd F x 1 st F x Y 2 nd F x Z
18 fo1st 1 st : V onto V
19 fofun 1 st : V onto V Fun 1 st
20 18 19 ax-mp Fun 1 st
21 funco Fun 1 st Fun F Fun 1 st F
22 20 21 mpan Fun F Fun 1 st F
23 22 adantr Fun F x dom F Fun 1 st F
24 ssv F dom F V
25 fof 1 st : V onto V 1 st : V V
26 fdm 1 st : V V dom 1 st = V
27 18 25 26 mp2b dom 1 st = V
28 24 27 sseqtrri F dom F dom 1 st
29 ssid dom F dom F
30 funimass3 Fun F dom F dom F F dom F dom 1 st dom F F -1 dom 1 st
31 29 30 mpan2 Fun F F dom F dom 1 st dom F F -1 dom 1 st
32 28 31 mpbii Fun F dom F F -1 dom 1 st
33 32 sselda Fun F x dom F x F -1 dom 1 st
34 dmco dom 1 st F = F -1 dom 1 st
35 33 34 eleqtrrdi Fun F x dom F x dom 1 st F
36 fvimacnv Fun 1 st F x dom 1 st F 1 st F x Y x 1 st F -1 Y
37 23 35 36 syl2anc Fun F x dom F 1 st F x Y x 1 st F -1 Y
38 fo2nd 2 nd : V onto V
39 fofun 2 nd : V onto V Fun 2 nd
40 38 39 ax-mp Fun 2 nd
41 funco Fun 2 nd Fun F Fun 2 nd F
42 40 41 mpan Fun F Fun 2 nd F
43 42 adantr Fun F x dom F Fun 2 nd F
44 fof 2 nd : V onto V 2 nd : V V
45 fdm 2 nd : V V dom 2 nd = V
46 38 44 45 mp2b dom 2 nd = V
47 24 46 sseqtrri F dom F dom 2 nd
48 funimass3 Fun F dom F dom F F dom F dom 2 nd dom F F -1 dom 2 nd
49 29 48 mpan2 Fun F F dom F dom 2 nd dom F F -1 dom 2 nd
50 47 49 mpbii Fun F dom F F -1 dom 2 nd
51 50 sselda Fun F x dom F x F -1 dom 2 nd
52 dmco dom 2 nd F = F -1 dom 2 nd
53 51 52 eleqtrrdi Fun F x dom F x dom 2 nd F
54 fvimacnv Fun 2 nd F x dom 2 nd F 2 nd F x Z x 2 nd F -1 Z
55 43 53 54 syl2anc Fun F x dom F 2 nd F x Z x 2 nd F -1 Z
56 37 55 anbi12d Fun F x dom F 1 st F x Y 2 nd F x Z x 1 st F -1 Y x 2 nd F -1 Z
57 56 adantlr Fun F ran F V × V x dom F 1 st F x Y 2 nd F x Z x 1 st F -1 Y x 2 nd F -1 Z
58 15 17 57 3bitr2d Fun F ran F V × V x dom F F x Y × Z x 1 st F -1 Y x 2 nd F -1 Z
59 58 rabbidva Fun F ran F V × V x dom F | F x Y × Z = x dom F | x 1 st F -1 Y x 2 nd F -1 Z
60 4 59 eqtrd Fun F ran F V × V F -1 Y × Z = x dom F | x 1 st F -1 Y x 2 nd F -1 Z
61 dfin5 dom F 1 st F -1 Y = x dom F | x 1 st F -1 Y
62 dfin5 dom F 2 nd F -1 Z = x dom F | x 2 nd F -1 Z
63 61 62 ineq12i dom F 1 st F -1 Y dom F 2 nd F -1 Z = x dom F | x 1 st F -1 Y x dom F | x 2 nd F -1 Z
64 cnvimass 1 st F -1 Y dom 1 st F
65 dmcoss dom 1 st F dom F
66 64 65 sstri 1 st F -1 Y dom F
67 sseqin2 1 st F -1 Y dom F dom F 1 st F -1 Y = 1 st F -1 Y
68 66 67 mpbi dom F 1 st F -1 Y = 1 st F -1 Y
69 cnvimass 2 nd F -1 Z dom 2 nd F
70 dmcoss dom 2 nd F dom F
71 69 70 sstri 2 nd F -1 Z dom F
72 sseqin2 2 nd F -1 Z dom F dom F 2 nd F -1 Z = 2 nd F -1 Z
73 71 72 mpbi dom F 2 nd F -1 Z = 2 nd F -1 Z
74 68 73 ineq12i dom F 1 st F -1 Y dom F 2 nd F -1 Z = 1 st F -1 Y 2 nd F -1 Z
75 inrab x dom F | x 1 st F -1 Y x dom F | x 2 nd F -1 Z = x dom F | x 1 st F -1 Y x 2 nd F -1 Z
76 63 74 75 3eqtr3ri x dom F | x 1 st F -1 Y x 2 nd F -1 Z = 1 st F -1 Y 2 nd F -1 Z
77 60 76 eqtrdi Fun F ran F V × V F -1 Y × Z = 1 st F -1 Y 2 nd F -1 Z