Step |
Hyp |
Ref |
Expression |
1 |
|
xppreima2.1 |
|
2 |
|
xppreima2.2 |
|
3 |
|
xppreima2.3 |
|
4 |
3
|
funmpt2 |
|
5 |
1
|
ffvelrnda |
|
6 |
2
|
ffvelrnda |
|
7 |
|
opelxp |
|
8 |
5 6 7
|
sylanbrc |
|
9 |
8 3
|
fmptd |
|
10 |
9
|
frnd |
|
11 |
|
xpss |
|
12 |
10 11
|
sstrdi |
|
13 |
|
xppreima |
|
14 |
4 12 13
|
sylancr |
|
15 |
|
fo1st |
|
16 |
|
fofn |
|
17 |
15 16
|
ax-mp |
|
18 |
|
opex |
|
19 |
18 3
|
fnmpti |
|
20 |
|
ssv |
|
21 |
|
fnco |
|
22 |
17 19 20 21
|
mp3an |
|
23 |
22
|
a1i |
|
24 |
1
|
ffnd |
|
25 |
4
|
a1i |
|
26 |
12
|
adantr |
|
27 |
|
simpr |
|
28 |
18 3
|
dmmpti |
|
29 |
27 28
|
eleqtrrdi |
|
30 |
|
opfv |
|
31 |
25 26 29 30
|
syl21anc |
|
32 |
3
|
fvmpt2 |
|
33 |
27 8 32
|
syl2anc |
|
34 |
31 33
|
eqtr3d |
|
35 |
|
fvex |
|
36 |
|
fvex |
|
37 |
35 36
|
opth |
|
38 |
34 37
|
sylib |
|
39 |
38
|
simpld |
|
40 |
23 24 39
|
eqfnfvd |
|
41 |
40
|
cnveqd |
|
42 |
41
|
imaeq1d |
|
43 |
|
fo2nd |
|
44 |
|
fofn |
|
45 |
43 44
|
ax-mp |
|
46 |
|
fnco |
|
47 |
45 19 20 46
|
mp3an |
|
48 |
47
|
a1i |
|
49 |
2
|
ffnd |
|
50 |
38
|
simprd |
|
51 |
48 49 50
|
eqfnfvd |
|
52 |
51
|
cnveqd |
|
53 |
52
|
imaeq1d |
|
54 |
42 53
|
ineq12d |
|
55 |
14 54
|
eqtrd |
|