Metamath Proof Explorer


Theorem xpprsng

Description: The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019)

Ref Expression
Assertion xpprsng A V B W C U A B × C = A C B C

Proof

Step Hyp Ref Expression
1 df-pr A B = A B
2 1 xpeq1i A B × C = A B × C
3 xpsng A V C U A × C = A C
4 3 3adant2 A V B W C U A × C = A C
5 xpsng B W C U B × C = B C
6 5 3adant1 A V B W C U B × C = B C
7 4 6 uneq12d A V B W C U A × C B × C = A C B C
8 xpundir A B × C = A × C B × C
9 df-pr A C B C = A C B C
10 7 8 9 3eqtr4g A V B W C U A B × C = A C B C
11 2 10 eqtrid A V B W C U A B × C = A C B C