Metamath Proof Explorer


Theorem xpsadd

Description: Value of the addition operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses xpsval.t T = R × 𝑠 S
xpsval.x X = Base R
xpsval.y Y = Base S
xpsval.1 φ R V
xpsval.2 φ S W
xpsadd.3 φ A X
xpsadd.4 φ B Y
xpsadd.5 φ C X
xpsadd.6 φ D Y
xpsadd.7 φ A · ˙ C X
xpsadd.8 φ B × ˙ D Y
xpsadd.m · ˙ = + R
xpsadd.n × ˙ = + S
xpsadd.p ˙ = + T
Assertion xpsadd φ A B ˙ C D = A · ˙ C B × ˙ D

Proof

Step Hyp Ref Expression
1 xpsval.t T = R × 𝑠 S
2 xpsval.x X = Base R
3 xpsval.y Y = Base S
4 xpsval.1 φ R V
5 xpsval.2 φ S W
6 xpsadd.3 φ A X
7 xpsadd.4 φ B Y
8 xpsadd.5 φ C X
9 xpsadd.6 φ D Y
10 xpsadd.7 φ A · ˙ C X
11 xpsadd.8 φ B × ˙ D Y
12 xpsadd.m · ˙ = + R
13 xpsadd.n × ˙ = + S
14 xpsadd.p ˙ = + T
15 eqid x X , y Y x 1 𝑜 y = x X , y Y x 1 𝑜 y
16 eqid Scalar R 𝑠 R 1 𝑜 S = Scalar R 𝑠 R 1 𝑜 S
17 15 xpsff1o2 x X , y Y x 1 𝑜 y : X × Y 1-1 onto ran x X , y Y x 1 𝑜 y
18 f1ocnv x X , y Y x 1 𝑜 y : X × Y 1-1 onto ran x X , y Y x 1 𝑜 y x X , y Y x 1 𝑜 y -1 : ran x X , y Y x 1 𝑜 y 1-1 onto X × Y
19 17 18 mp1i φ x X , y Y x 1 𝑜 y -1 : ran x X , y Y x 1 𝑜 y 1-1 onto X × Y
20 f1ofo x X , y Y x 1 𝑜 y -1 : ran x X , y Y x 1 𝑜 y 1-1 onto X × Y x X , y Y x 1 𝑜 y -1 : ran x X , y Y x 1 𝑜 y onto X × Y
21 19 20 syl φ x X , y Y x 1 𝑜 y -1 : ran x X , y Y x 1 𝑜 y onto X × Y
22 19 f1ocpbl φ a ran x X , y Y x 1 𝑜 y b ran x X , y Y x 1 𝑜 y c ran x X , y Y x 1 𝑜 y d ran x X , y Y x 1 𝑜 y x X , y Y x 1 𝑜 y -1 a = x X , y Y x 1 𝑜 y -1 c x X , y Y x 1 𝑜 y -1 b = x X , y Y x 1 𝑜 y -1 d x X , y Y x 1 𝑜 y -1 a + Scalar R 𝑠 R 1 𝑜 S b = x X , y Y x 1 𝑜 y -1 c + Scalar R 𝑠 R 1 𝑜 S d
23 eqid Scalar R = Scalar R
24 1 2 3 4 5 15 23 16 xpsval φ T = x X , y Y x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S
25 1 2 3 4 5 15 23 16 xpsrnbas φ ran x X , y Y x 1 𝑜 y = Base Scalar R 𝑠 R 1 𝑜 S
26 ovexd φ Scalar R 𝑠 R 1 𝑜 S V
27 eqid + Scalar R 𝑠 R 1 𝑜 S = + Scalar R 𝑠 R 1 𝑜 S
28 21 22 24 25 26 27 14 imasaddval φ A 1 𝑜 B ran x X , y Y x 1 𝑜 y C 1 𝑜 D ran x X , y Y x 1 𝑜 y x X , y Y x 1 𝑜 y -1 A 1 𝑜 B ˙ x X , y Y x 1 𝑜 y -1 C 1 𝑜 D = x X , y Y x 1 𝑜 y -1 A 1 𝑜 B + Scalar R 𝑠 R 1 𝑜 S C 1 𝑜 D
29 eqid Base Scalar R 𝑠 R 1 𝑜 S = Base Scalar R 𝑠 R 1 𝑜 S
30 fvexd R 1 𝑜 S Fn 2 𝑜 A 1 𝑜 B Base Scalar R 𝑠 R 1 𝑜 S C 1 𝑜 D Base Scalar R 𝑠 R 1 𝑜 S Scalar R V
31 2on 2 𝑜 On
32 31 a1i R 1 𝑜 S Fn 2 𝑜 A 1 𝑜 B Base Scalar R 𝑠 R 1 𝑜 S C 1 𝑜 D Base Scalar R 𝑠 R 1 𝑜 S 2 𝑜 On
33 simp1 R 1 𝑜 S Fn 2 𝑜 A 1 𝑜 B Base Scalar R 𝑠 R 1 𝑜 S C 1 𝑜 D Base Scalar R 𝑠 R 1 𝑜 S R 1 𝑜 S Fn 2 𝑜
34 simp2 R 1 𝑜 S Fn 2 𝑜 A 1 𝑜 B Base Scalar R 𝑠 R 1 𝑜 S C 1 𝑜 D Base Scalar R 𝑠 R 1 𝑜 S A 1 𝑜 B Base Scalar R 𝑠 R 1 𝑜 S
35 simp3 R 1 𝑜 S Fn 2 𝑜 A 1 𝑜 B Base Scalar R 𝑠 R 1 𝑜 S C 1 𝑜 D Base Scalar R 𝑠 R 1 𝑜 S C 1 𝑜 D Base Scalar R 𝑠 R 1 𝑜 S
36 16 29 30 32 33 34 35 27 prdsplusgval R 1 𝑜 S Fn 2 𝑜 A 1 𝑜 B Base Scalar R 𝑠 R 1 𝑜 S C 1 𝑜 D Base Scalar R 𝑠 R 1 𝑜 S A 1 𝑜 B + Scalar R 𝑠 R 1 𝑜 S C 1 𝑜 D = k 2 𝑜 A 1 𝑜 B k + R 1 𝑜 S k C 1 𝑜 D k
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 28 36 xpsaddlem φ A B ˙ C D = A · ˙ C B × ˙ D