Metamath Proof Explorer


Theorem xpsaddlem

Description: Lemma for xpsadd and xpsmul . (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses xpsval.t T = R × 𝑠 S
xpsval.x X = Base R
xpsval.y Y = Base S
xpsval.1 φ R V
xpsval.2 φ S W
xpsadd.3 φ A X
xpsadd.4 φ B Y
xpsadd.5 φ C X
xpsadd.6 φ D Y
xpsadd.7 φ A · ˙ C X
xpsadd.8 φ B × ˙ D Y
xpsaddlem.m · ˙ = E R
xpsaddlem.n × ˙ = E S
xpsaddlem.p ˙ = E T
xpsaddlem.f F = x X , y Y x 1 𝑜 y
xpsaddlem.u U = Scalar R 𝑠 R 1 𝑜 S
xpsaddlem.1 φ A 1 𝑜 B ran F C 1 𝑜 D ran F F -1 A 1 𝑜 B ˙ F -1 C 1 𝑜 D = F -1 A 1 𝑜 B E U C 1 𝑜 D
xpsaddlem.2 R 1 𝑜 S Fn 2 𝑜 A 1 𝑜 B Base U C 1 𝑜 D Base U A 1 𝑜 B E U C 1 𝑜 D = k 2 𝑜 A 1 𝑜 B k E R 1 𝑜 S k C 1 𝑜 D k
Assertion xpsaddlem φ A B ˙ C D = A · ˙ C B × ˙ D

Proof

Step Hyp Ref Expression
1 xpsval.t T = R × 𝑠 S
2 xpsval.x X = Base R
3 xpsval.y Y = Base S
4 xpsval.1 φ R V
5 xpsval.2 φ S W
6 xpsadd.3 φ A X
7 xpsadd.4 φ B Y
8 xpsadd.5 φ C X
9 xpsadd.6 φ D Y
10 xpsadd.7 φ A · ˙ C X
11 xpsadd.8 φ B × ˙ D Y
12 xpsaddlem.m · ˙ = E R
13 xpsaddlem.n × ˙ = E S
14 xpsaddlem.p ˙ = E T
15 xpsaddlem.f F = x X , y Y x 1 𝑜 y
16 xpsaddlem.u U = Scalar R 𝑠 R 1 𝑜 S
17 xpsaddlem.1 φ A 1 𝑜 B ran F C 1 𝑜 D ran F F -1 A 1 𝑜 B ˙ F -1 C 1 𝑜 D = F -1 A 1 𝑜 B E U C 1 𝑜 D
18 xpsaddlem.2 R 1 𝑜 S Fn 2 𝑜 A 1 𝑜 B Base U C 1 𝑜 D Base U A 1 𝑜 B E U C 1 𝑜 D = k 2 𝑜 A 1 𝑜 B k E R 1 𝑜 S k C 1 𝑜 D k
19 df-ov A F B = F A B
20 15 xpsfval A X B Y A F B = A 1 𝑜 B
21 6 7 20 syl2anc φ A F B = A 1 𝑜 B
22 19 21 eqtr3id φ F A B = A 1 𝑜 B
23 6 7 opelxpd φ A B X × Y
24 15 xpsff1o2 F : X × Y 1-1 onto ran F
25 f1of F : X × Y 1-1 onto ran F F : X × Y ran F
26 24 25 ax-mp F : X × Y ran F
27 26 ffvelrni A B X × Y F A B ran F
28 23 27 syl φ F A B ran F
29 22 28 eqeltrrd φ A 1 𝑜 B ran F
30 df-ov C F D = F C D
31 15 xpsfval C X D Y C F D = C 1 𝑜 D
32 8 9 31 syl2anc φ C F D = C 1 𝑜 D
33 30 32 eqtr3id φ F C D = C 1 𝑜 D
34 8 9 opelxpd φ C D X × Y
35 26 ffvelrni C D X × Y F C D ran F
36 34 35 syl φ F C D ran F
37 33 36 eqeltrrd φ C 1 𝑜 D ran F
38 29 37 17 mpd3an23 φ F -1 A 1 𝑜 B ˙ F -1 C 1 𝑜 D = F -1 A 1 𝑜 B E U C 1 𝑜 D
39 f1ocnvfv F : X × Y 1-1 onto ran F A B X × Y F A B = A 1 𝑜 B F -1 A 1 𝑜 B = A B
40 24 23 39 sylancr φ F A B = A 1 𝑜 B F -1 A 1 𝑜 B = A B
41 22 40 mpd φ F -1 A 1 𝑜 B = A B
42 f1ocnvfv F : X × Y 1-1 onto ran F C D X × Y F C D = C 1 𝑜 D F -1 C 1 𝑜 D = C D
43 24 34 42 sylancr φ F C D = C 1 𝑜 D F -1 C 1 𝑜 D = C D
44 33 43 mpd φ F -1 C 1 𝑜 D = C D
45 41 44 oveq12d φ F -1 A 1 𝑜 B ˙ F -1 C 1 𝑜 D = A B ˙ C D
46 iftrue k = if k = R S = R
47 46 fveq2d k = E if k = R S = E R
48 47 12 eqtr4di k = E if k = R S = · ˙
49 iftrue k = if k = A B = A
50 iftrue k = if k = C D = C
51 48 49 50 oveq123d k = if k = A B E if k = R S if k = C D = A · ˙ C
52 iftrue k = if k = A · ˙ C B × ˙ D = A · ˙ C
53 51 52 eqtr4d k = if k = A B E if k = R S if k = C D = if k = A · ˙ C B × ˙ D
54 iffalse ¬ k = if k = R S = S
55 54 fveq2d ¬ k = E if k = R S = E S
56 55 13 eqtr4di ¬ k = E if k = R S = × ˙
57 iffalse ¬ k = if k = A B = B
58 iffalse ¬ k = if k = C D = D
59 56 57 58 oveq123d ¬ k = if k = A B E if k = R S if k = C D = B × ˙ D
60 iffalse ¬ k = if k = A · ˙ C B × ˙ D = B × ˙ D
61 59 60 eqtr4d ¬ k = if k = A B E if k = R S if k = C D = if k = A · ˙ C B × ˙ D
62 53 61 pm2.61i if k = A B E if k = R S if k = C D = if k = A · ˙ C B × ˙ D
63 4 adantr φ k 2 𝑜 R V
64 5 adantr φ k 2 𝑜 S W
65 simpr φ k 2 𝑜 k 2 𝑜
66 fvprif R V S W k 2 𝑜 R 1 𝑜 S k = if k = R S
67 63 64 65 66 syl3anc φ k 2 𝑜 R 1 𝑜 S k = if k = R S
68 67 fveq2d φ k 2 𝑜 E R 1 𝑜 S k = E if k = R S
69 6 adantr φ k 2 𝑜 A X
70 7 adantr φ k 2 𝑜 B Y
71 fvprif A X B Y k 2 𝑜 A 1 𝑜 B k = if k = A B
72 69 70 65 71 syl3anc φ k 2 𝑜 A 1 𝑜 B k = if k = A B
73 8 adantr φ k 2 𝑜 C X
74 9 adantr φ k 2 𝑜 D Y
75 fvprif C X D Y k 2 𝑜 C 1 𝑜 D k = if k = C D
76 73 74 65 75 syl3anc φ k 2 𝑜 C 1 𝑜 D k = if k = C D
77 68 72 76 oveq123d φ k 2 𝑜 A 1 𝑜 B k E R 1 𝑜 S k C 1 𝑜 D k = if k = A B E if k = R S if k = C D
78 10 adantr φ k 2 𝑜 A · ˙ C X
79 11 adantr φ k 2 𝑜 B × ˙ D Y
80 fvprif A · ˙ C X B × ˙ D Y k 2 𝑜 A · ˙ C 1 𝑜 B × ˙ D k = if k = A · ˙ C B × ˙ D
81 78 79 65 80 syl3anc φ k 2 𝑜 A · ˙ C 1 𝑜 B × ˙ D k = if k = A · ˙ C B × ˙ D
82 62 77 81 3eqtr4a φ k 2 𝑜 A 1 𝑜 B k E R 1 𝑜 S k C 1 𝑜 D k = A · ˙ C 1 𝑜 B × ˙ D k
83 82 mpteq2dva φ k 2 𝑜 A 1 𝑜 B k E R 1 𝑜 S k C 1 𝑜 D k = k 2 𝑜 A · ˙ C 1 𝑜 B × ˙ D k
84 fnpr2o R V S W R 1 𝑜 S Fn 2 𝑜
85 4 5 84 syl2anc φ R 1 𝑜 S Fn 2 𝑜
86 eqid Scalar R = Scalar R
87 1 2 3 4 5 15 86 16 xpsrnbas φ ran F = Base U
88 29 87 eleqtrd φ A 1 𝑜 B Base U
89 37 87 eleqtrd φ C 1 𝑜 D Base U
90 85 88 89 18 syl3anc φ A 1 𝑜 B E U C 1 𝑜 D = k 2 𝑜 A 1 𝑜 B k E R 1 𝑜 S k C 1 𝑜 D k
91 fnpr2o A · ˙ C X B × ˙ D Y A · ˙ C 1 𝑜 B × ˙ D Fn 2 𝑜
92 10 11 91 syl2anc φ A · ˙ C 1 𝑜 B × ˙ D Fn 2 𝑜
93 dffn5 A · ˙ C 1 𝑜 B × ˙ D Fn 2 𝑜 A · ˙ C 1 𝑜 B × ˙ D = k 2 𝑜 A · ˙ C 1 𝑜 B × ˙ D k
94 92 93 sylib φ A · ˙ C 1 𝑜 B × ˙ D = k 2 𝑜 A · ˙ C 1 𝑜 B × ˙ D k
95 83 90 94 3eqtr4d φ A 1 𝑜 B E U C 1 𝑜 D = A · ˙ C 1 𝑜 B × ˙ D
96 95 fveq2d φ F -1 A 1 𝑜 B E U C 1 𝑜 D = F -1 A · ˙ C 1 𝑜 B × ˙ D
97 df-ov A · ˙ C F B × ˙ D = F A · ˙ C B × ˙ D
98 15 xpsfval A · ˙ C X B × ˙ D Y A · ˙ C F B × ˙ D = A · ˙ C 1 𝑜 B × ˙ D
99 10 11 98 syl2anc φ A · ˙ C F B × ˙ D = A · ˙ C 1 𝑜 B × ˙ D
100 97 99 eqtr3id φ F A · ˙ C B × ˙ D = A · ˙ C 1 𝑜 B × ˙ D
101 10 11 opelxpd φ A · ˙ C B × ˙ D X × Y
102 f1ocnvfv F : X × Y 1-1 onto ran F A · ˙ C B × ˙ D X × Y F A · ˙ C B × ˙ D = A · ˙ C 1 𝑜 B × ˙ D F -1 A · ˙ C 1 𝑜 B × ˙ D = A · ˙ C B × ˙ D
103 24 101 102 sylancr φ F A · ˙ C B × ˙ D = A · ˙ C 1 𝑜 B × ˙ D F -1 A · ˙ C 1 𝑜 B × ˙ D = A · ˙ C B × ˙ D
104 100 103 mpd φ F -1 A · ˙ C 1 𝑜 B × ˙ D = A · ˙ C B × ˙ D
105 96 104 eqtrd φ F -1 A 1 𝑜 B E U C 1 𝑜 D = A · ˙ C B × ˙ D
106 38 45 105 3eqtr3d φ A B ˙ C D = A · ˙ C B × ˙ D