Metamath Proof Explorer


Theorem xpsaddlem

Description: Lemma for xpsadd and xpsmul . (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses xpsval.t T=R×𝑠S
xpsval.x X=BaseR
xpsval.y Y=BaseS
xpsval.1 φRV
xpsval.2 φSW
xpsadd.3 φAX
xpsadd.4 φBY
xpsadd.5 φCX
xpsadd.6 φDY
xpsadd.7 φA·˙CX
xpsadd.8 φB×˙DY
xpsaddlem.m ·˙=ER
xpsaddlem.n ×˙=ES
xpsaddlem.p ˙=ET
xpsaddlem.f F=xX,yYx1𝑜y
xpsaddlem.u U=ScalarR𝑠R1𝑜S
xpsaddlem.1 φA1𝑜BranFC1𝑜DranFF-1A1𝑜B˙F-1C1𝑜D=F-1A1𝑜BEUC1𝑜D
xpsaddlem.2 R1𝑜SFn2𝑜A1𝑜BBaseUC1𝑜DBaseUA1𝑜BEUC1𝑜D=k2𝑜A1𝑜BkER1𝑜SkC1𝑜Dk
Assertion xpsaddlem φAB˙CD=A·˙CB×˙D

Proof

Step Hyp Ref Expression
1 xpsval.t T=R×𝑠S
2 xpsval.x X=BaseR
3 xpsval.y Y=BaseS
4 xpsval.1 φRV
5 xpsval.2 φSW
6 xpsadd.3 φAX
7 xpsadd.4 φBY
8 xpsadd.5 φCX
9 xpsadd.6 φDY
10 xpsadd.7 φA·˙CX
11 xpsadd.8 φB×˙DY
12 xpsaddlem.m ·˙=ER
13 xpsaddlem.n ×˙=ES
14 xpsaddlem.p ˙=ET
15 xpsaddlem.f F=xX,yYx1𝑜y
16 xpsaddlem.u U=ScalarR𝑠R1𝑜S
17 xpsaddlem.1 φA1𝑜BranFC1𝑜DranFF-1A1𝑜B˙F-1C1𝑜D=F-1A1𝑜BEUC1𝑜D
18 xpsaddlem.2 R1𝑜SFn2𝑜A1𝑜BBaseUC1𝑜DBaseUA1𝑜BEUC1𝑜D=k2𝑜A1𝑜BkER1𝑜SkC1𝑜Dk
19 df-ov AFB=FAB
20 15 xpsfval AXBYAFB=A1𝑜B
21 6 7 20 syl2anc φAFB=A1𝑜B
22 19 21 eqtr3id φFAB=A1𝑜B
23 6 7 opelxpd φABX×Y
24 15 xpsff1o2 F:X×Y1-1 ontoranF
25 f1of F:X×Y1-1 ontoranFF:X×YranF
26 24 25 ax-mp F:X×YranF
27 26 ffvelrni ABX×YFABranF
28 23 27 syl φFABranF
29 22 28 eqeltrrd φA1𝑜BranF
30 df-ov CFD=FCD
31 15 xpsfval CXDYCFD=C1𝑜D
32 8 9 31 syl2anc φCFD=C1𝑜D
33 30 32 eqtr3id φFCD=C1𝑜D
34 8 9 opelxpd φCDX×Y
35 26 ffvelrni CDX×YFCDranF
36 34 35 syl φFCDranF
37 33 36 eqeltrrd φC1𝑜DranF
38 29 37 17 mpd3an23 φF-1A1𝑜B˙F-1C1𝑜D=F-1A1𝑜BEUC1𝑜D
39 f1ocnvfv F:X×Y1-1 ontoranFABX×YFAB=A1𝑜BF-1A1𝑜B=AB
40 24 23 39 sylancr φFAB=A1𝑜BF-1A1𝑜B=AB
41 22 40 mpd φF-1A1𝑜B=AB
42 f1ocnvfv F:X×Y1-1 ontoranFCDX×YFCD=C1𝑜DF-1C1𝑜D=CD
43 24 34 42 sylancr φFCD=C1𝑜DF-1C1𝑜D=CD
44 33 43 mpd φF-1C1𝑜D=CD
45 41 44 oveq12d φF-1A1𝑜B˙F-1C1𝑜D=AB˙CD
46 iftrue k=ifk=RS=R
47 46 fveq2d k=Eifk=RS=ER
48 47 12 eqtr4di k=Eifk=RS=·˙
49 iftrue k=ifk=AB=A
50 iftrue k=ifk=CD=C
51 48 49 50 oveq123d k=ifk=ABEifk=RSifk=CD=A·˙C
52 iftrue k=ifk=A·˙CB×˙D=A·˙C
53 51 52 eqtr4d k=ifk=ABEifk=RSifk=CD=ifk=A·˙CB×˙D
54 iffalse ¬k=ifk=RS=S
55 54 fveq2d ¬k=Eifk=RS=ES
56 55 13 eqtr4di ¬k=Eifk=RS=×˙
57 iffalse ¬k=ifk=AB=B
58 iffalse ¬k=ifk=CD=D
59 56 57 58 oveq123d ¬k=ifk=ABEifk=RSifk=CD=B×˙D
60 iffalse ¬k=ifk=A·˙CB×˙D=B×˙D
61 59 60 eqtr4d ¬k=ifk=ABEifk=RSifk=CD=ifk=A·˙CB×˙D
62 53 61 pm2.61i ifk=ABEifk=RSifk=CD=ifk=A·˙CB×˙D
63 4 adantr φk2𝑜RV
64 5 adantr φk2𝑜SW
65 simpr φk2𝑜k2𝑜
66 fvprif RVSWk2𝑜R1𝑜Sk=ifk=RS
67 63 64 65 66 syl3anc φk2𝑜R1𝑜Sk=ifk=RS
68 67 fveq2d φk2𝑜ER1𝑜Sk=Eifk=RS
69 6 adantr φk2𝑜AX
70 7 adantr φk2𝑜BY
71 fvprif AXBYk2𝑜A1𝑜Bk=ifk=AB
72 69 70 65 71 syl3anc φk2𝑜A1𝑜Bk=ifk=AB
73 8 adantr φk2𝑜CX
74 9 adantr φk2𝑜DY
75 fvprif CXDYk2𝑜C1𝑜Dk=ifk=CD
76 73 74 65 75 syl3anc φk2𝑜C1𝑜Dk=ifk=CD
77 68 72 76 oveq123d φk2𝑜A1𝑜BkER1𝑜SkC1𝑜Dk=ifk=ABEifk=RSifk=CD
78 10 adantr φk2𝑜A·˙CX
79 11 adantr φk2𝑜B×˙DY
80 fvprif A·˙CXB×˙DYk2𝑜A·˙C1𝑜B×˙Dk=ifk=A·˙CB×˙D
81 78 79 65 80 syl3anc φk2𝑜A·˙C1𝑜B×˙Dk=ifk=A·˙CB×˙D
82 62 77 81 3eqtr4a φk2𝑜A1𝑜BkER1𝑜SkC1𝑜Dk=A·˙C1𝑜B×˙Dk
83 82 mpteq2dva φk2𝑜A1𝑜BkER1𝑜SkC1𝑜Dk=k2𝑜A·˙C1𝑜B×˙Dk
84 fnpr2o RVSWR1𝑜SFn2𝑜
85 4 5 84 syl2anc φR1𝑜SFn2𝑜
86 eqid ScalarR=ScalarR
87 1 2 3 4 5 15 86 16 xpsrnbas φranF=BaseU
88 29 87 eleqtrd φA1𝑜BBaseU
89 37 87 eleqtrd φC1𝑜DBaseU
90 85 88 89 18 syl3anc φA1𝑜BEUC1𝑜D=k2𝑜A1𝑜BkER1𝑜SkC1𝑜Dk
91 fnpr2o A·˙CXB×˙DYA·˙C1𝑜B×˙DFn2𝑜
92 10 11 91 syl2anc φA·˙C1𝑜B×˙DFn2𝑜
93 dffn5 A·˙C1𝑜B×˙DFn2𝑜A·˙C1𝑜B×˙D=k2𝑜A·˙C1𝑜B×˙Dk
94 92 93 sylib φA·˙C1𝑜B×˙D=k2𝑜A·˙C1𝑜B×˙Dk
95 83 90 94 3eqtr4d φA1𝑜BEUC1𝑜D=A·˙C1𝑜B×˙D
96 95 fveq2d φF-1A1𝑜BEUC1𝑜D=F-1A·˙C1𝑜B×˙D
97 df-ov A·˙CFB×˙D=FA·˙CB×˙D
98 15 xpsfval A·˙CXB×˙DYA·˙CFB×˙D=A·˙C1𝑜B×˙D
99 10 11 98 syl2anc φA·˙CFB×˙D=A·˙C1𝑜B×˙D
100 97 99 eqtr3id φFA·˙CB×˙D=A·˙C1𝑜B×˙D
101 10 11 opelxpd φA·˙CB×˙DX×Y
102 f1ocnvfv F:X×Y1-1 ontoranFA·˙CB×˙DX×YFA·˙CB×˙D=A·˙C1𝑜B×˙DF-1A·˙C1𝑜B×˙D=A·˙CB×˙D
103 24 101 102 sylancr φFA·˙CB×˙D=A·˙C1𝑜B×˙DF-1A·˙C1𝑜B×˙D=A·˙CB×˙D
104 100 103 mpd φF-1A·˙C1𝑜B×˙D=A·˙CB×˙D
105 96 104 eqtrd φF-1A1𝑜BEUC1𝑜D=A·˙CB×˙D
106 38 45 105 3eqtr3d φAB˙CD=A·˙CB×˙D