Metamath Proof Explorer


Theorem xpscf

Description: Equivalent condition for the pair function to be a proper function on A . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xpscf X 1 𝑜 Y : 2 𝑜 A X A Y A

Proof

Step Hyp Ref Expression
1 ifid if k = A A = A
2 1 eleq2i X 1 𝑜 Y k if k = A A X 1 𝑜 Y k A
3 2 ralbii k 2 𝑜 X 1 𝑜 Y k if k = A A k 2 𝑜 X 1 𝑜 Y k A
4 3 anbi2i X 1 𝑜 Y Fn 2 𝑜 k 2 𝑜 X 1 𝑜 Y k if k = A A X 1 𝑜 Y Fn 2 𝑜 k 2 𝑜 X 1 𝑜 Y k A
5 df-3an X 1 𝑜 Y V X 1 𝑜 Y Fn 2 𝑜 k 2 𝑜 X 1 𝑜 Y k if k = A A X 1 𝑜 Y V X 1 𝑜 Y Fn 2 𝑜 k 2 𝑜 X 1 𝑜 Y k if k = A A
6 elixp2 X 1 𝑜 Y k 2 𝑜 if k = A A X 1 𝑜 Y V X 1 𝑜 Y Fn 2 𝑜 k 2 𝑜 X 1 𝑜 Y k if k = A A
7 2onn 2 𝑜 ω
8 fnex X 1 𝑜 Y Fn 2 𝑜 2 𝑜 ω X 1 𝑜 Y V
9 7 8 mpan2 X 1 𝑜 Y Fn 2 𝑜 X 1 𝑜 Y V
10 9 pm4.71ri X 1 𝑜 Y Fn 2 𝑜 X 1 𝑜 Y V X 1 𝑜 Y Fn 2 𝑜
11 10 anbi1i X 1 𝑜 Y Fn 2 𝑜 k 2 𝑜 X 1 𝑜 Y k if k = A A X 1 𝑜 Y V X 1 𝑜 Y Fn 2 𝑜 k 2 𝑜 X 1 𝑜 Y k if k = A A
12 5 6 11 3bitr4i X 1 𝑜 Y k 2 𝑜 if k = A A X 1 𝑜 Y Fn 2 𝑜 k 2 𝑜 X 1 𝑜 Y k if k = A A
13 ffnfv X 1 𝑜 Y : 2 𝑜 A X 1 𝑜 Y Fn 2 𝑜 k 2 𝑜 X 1 𝑜 Y k A
14 4 12 13 3bitr4i X 1 𝑜 Y k 2 𝑜 if k = A A X 1 𝑜 Y : 2 𝑜 A
15 xpsfrnel2 X 1 𝑜 Y k 2 𝑜 if k = A A X A Y A
16 14 15 bitr3i X 1 𝑜 Y : 2 𝑜 A X A Y A