Metamath Proof Explorer


Theorem xpsdsfn2

Description: Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses xpsds.t T = R × 𝑠 S
xpsds.x X = Base R
xpsds.y Y = Base S
xpsds.1 φ R V
xpsds.2 φ S W
xpsds.p P = dist T
Assertion xpsdsfn2 φ P Fn Base T × Base T

Proof

Step Hyp Ref Expression
1 xpsds.t T = R × 𝑠 S
2 xpsds.x X = Base R
3 xpsds.y Y = Base S
4 xpsds.1 φ R V
5 xpsds.2 φ S W
6 xpsds.p P = dist T
7 1 2 3 4 5 6 xpsdsfn φ P Fn X × Y × X × Y
8 1 2 3 4 5 xpsbas φ X × Y = Base T
9 8 sqxpeqd φ X × Y × X × Y = Base T × Base T
10 9 fneq2d φ P Fn X × Y × X × Y P Fn Base T × Base T
11 7 10 mpbid φ P Fn Base T × Base T