Metamath Proof Explorer


Theorem xpsff1o

Description: The function appearing in xpsval is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = { (/) , 1o } . (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypothesis xpsff1o.f F = x A , y B x 1 𝑜 y
Assertion xpsff1o F : A × B 1-1 onto k 2 𝑜 if k = A B

Proof

Step Hyp Ref Expression
1 xpsff1o.f F = x A , y B x 1 𝑜 y
2 xpsfrnel2 x 1 𝑜 y k 2 𝑜 if k = A B x A y B
3 2 biimpri x A y B x 1 𝑜 y k 2 𝑜 if k = A B
4 3 rgen2 x A y B x 1 𝑜 y k 2 𝑜 if k = A B
5 1 fmpo x A y B x 1 𝑜 y k 2 𝑜 if k = A B F : A × B k 2 𝑜 if k = A B
6 4 5 mpbi F : A × B k 2 𝑜 if k = A B
7 1st2nd2 z A × B z = 1 st z 2 nd z
8 7 fveq2d z A × B F z = F 1 st z 2 nd z
9 df-ov 1 st z F 2 nd z = F 1 st z 2 nd z
10 xp1st z A × B 1 st z A
11 xp2nd z A × B 2 nd z B
12 1 xpsfval 1 st z A 2 nd z B 1 st z F 2 nd z = 1 st z 1 𝑜 2 nd z
13 10 11 12 syl2anc z A × B 1 st z F 2 nd z = 1 st z 1 𝑜 2 nd z
14 9 13 syl5eqr z A × B F 1 st z 2 nd z = 1 st z 1 𝑜 2 nd z
15 8 14 eqtrd z A × B F z = 1 st z 1 𝑜 2 nd z
16 1st2nd2 w A × B w = 1 st w 2 nd w
17 16 fveq2d w A × B F w = F 1 st w 2 nd w
18 df-ov 1 st w F 2 nd w = F 1 st w 2 nd w
19 xp1st w A × B 1 st w A
20 xp2nd w A × B 2 nd w B
21 1 xpsfval 1 st w A 2 nd w B 1 st w F 2 nd w = 1 st w 1 𝑜 2 nd w
22 19 20 21 syl2anc w A × B 1 st w F 2 nd w = 1 st w 1 𝑜 2 nd w
23 18 22 syl5eqr w A × B F 1 st w 2 nd w = 1 st w 1 𝑜 2 nd w
24 17 23 eqtrd w A × B F w = 1 st w 1 𝑜 2 nd w
25 15 24 eqeqan12d z A × B w A × B F z = F w 1 st z 1 𝑜 2 nd z = 1 st w 1 𝑜 2 nd w
26 fveq1 1 st z 1 𝑜 2 nd z = 1 st w 1 𝑜 2 nd w 1 st z 1 𝑜 2 nd z = 1 st w 1 𝑜 2 nd w
27 fvex 1 st z V
28 fvpr0o 1 st z V 1 st z 1 𝑜 2 nd z = 1 st z
29 27 28 ax-mp 1 st z 1 𝑜 2 nd z = 1 st z
30 fvex 1 st w V
31 fvpr0o 1 st w V 1 st w 1 𝑜 2 nd w = 1 st w
32 30 31 ax-mp 1 st w 1 𝑜 2 nd w = 1 st w
33 26 29 32 3eqtr3g 1 st z 1 𝑜 2 nd z = 1 st w 1 𝑜 2 nd w 1 st z = 1 st w
34 fveq1 1 st z 1 𝑜 2 nd z = 1 st w 1 𝑜 2 nd w 1 st z 1 𝑜 2 nd z 1 𝑜 = 1 st w 1 𝑜 2 nd w 1 𝑜
35 fvex 2 nd z V
36 fvpr1o 2 nd z V 1 st z 1 𝑜 2 nd z 1 𝑜 = 2 nd z
37 35 36 ax-mp 1 st z 1 𝑜 2 nd z 1 𝑜 = 2 nd z
38 fvex 2 nd w V
39 fvpr1o 2 nd w V 1 st w 1 𝑜 2 nd w 1 𝑜 = 2 nd w
40 38 39 ax-mp 1 st w 1 𝑜 2 nd w 1 𝑜 = 2 nd w
41 34 37 40 3eqtr3g 1 st z 1 𝑜 2 nd z = 1 st w 1 𝑜 2 nd w 2 nd z = 2 nd w
42 33 41 opeq12d 1 st z 1 𝑜 2 nd z = 1 st w 1 𝑜 2 nd w 1 st z 2 nd z = 1 st w 2 nd w
43 7 16 eqeqan12d z A × B w A × B z = w 1 st z 2 nd z = 1 st w 2 nd w
44 42 43 syl5ibr z A × B w A × B 1 st z 1 𝑜 2 nd z = 1 st w 1 𝑜 2 nd w z = w
45 25 44 sylbid z A × B w A × B F z = F w z = w
46 45 rgen2 z A × B w A × B F z = F w z = w
47 dff13 F : A × B 1-1 k 2 𝑜 if k = A B F : A × B k 2 𝑜 if k = A B z A × B w A × B F z = F w z = w
48 6 46 47 mpbir2an F : A × B 1-1 k 2 𝑜 if k = A B
49 xpsfrnel z k 2 𝑜 if k = A B z Fn 2 𝑜 z A z 1 𝑜 B
50 49 simp2bi z k 2 𝑜 if k = A B z A
51 49 simp3bi z k 2 𝑜 if k = A B z 1 𝑜 B
52 1 xpsfval z A z 1 𝑜 B z F z 1 𝑜 = z 1 𝑜 z 1 𝑜
53 50 51 52 syl2anc z k 2 𝑜 if k = A B z F z 1 𝑜 = z 1 𝑜 z 1 𝑜
54 ixpfn z k 2 𝑜 if k = A B z Fn 2 𝑜
55 xpsfeq z Fn 2 𝑜 z 1 𝑜 z 1 𝑜 = z
56 54 55 syl z k 2 𝑜 if k = A B z 1 𝑜 z 1 𝑜 = z
57 53 56 eqtr2d z k 2 𝑜 if k = A B z = z F z 1 𝑜
58 rspceov z A z 1 𝑜 B z = z F z 1 𝑜 a A b B z = a F b
59 50 51 57 58 syl3anc z k 2 𝑜 if k = A B a A b B z = a F b
60 59 rgen z k 2 𝑜 if k = A B a A b B z = a F b
61 foov F : A × B onto k 2 𝑜 if k = A B F : A × B k 2 𝑜 if k = A B z k 2 𝑜 if k = A B a A b B z = a F b
62 6 60 61 mpbir2an F : A × B onto k 2 𝑜 if k = A B
63 df-f1o F : A × B 1-1 onto k 2 𝑜 if k = A B F : A × B 1-1 k 2 𝑜 if k = A B F : A × B onto k 2 𝑜 if k = A B
64 48 62 63 mpbir2an F : A × B 1-1 onto k 2 𝑜 if k = A B