Metamath Proof Explorer


Theorem xpsff1o2

Description: The function appearing in xpsval is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = { (/) , 1o } . (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Hypothesis xpsff1o.f F = x A , y B x 1 𝑜 y
Assertion xpsff1o2 F : A × B 1-1 onto ran F

Proof

Step Hyp Ref Expression
1 xpsff1o.f F = x A , y B x 1 𝑜 y
2 1 xpsff1o F : A × B 1-1 onto k 2 𝑜 if k = A B
3 f1of1 F : A × B 1-1 onto k 2 𝑜 if k = A B F : A × B 1-1 k 2 𝑜 if k = A B
4 f1f1orn F : A × B 1-1 k 2 𝑜 if k = A B F : A × B 1-1 onto ran F
5 2 3 4 mp2b F : A × B 1-1 onto ran F